Skip to main content
Log in

Matrix method for simulating the tunneling transfer

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

We develop an efficient approach for computer simulation of stationary scattering and tunneling transfer across an arbitrary one-dimensional potential barrier. New algorithms and programs were worked out and tested and the convergence of the method in question was examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Kobayashi, Introduction into Nanoelektronics (BINOM, Moscow, 2008) [in Russian].

    Google Scholar 

  2. Y. Ando and T. Itoh, “Calculation of Transmission Tunneling Current across Arbitrary Potential Barriers,” Appl. Phys. 61(4), 1497–1502 (1987).

    Article  Google Scholar 

  3. W. Lui and M. Fukuma, “Exact Solution of the Schrodinger Equation across an Arbitrary One-Dimensional Piecewise-Linear Potential Barrier,” Appl. Phys. 60(5), 1555–1559 (1986).

    Article  Google Scholar 

  4. V. A. Fedirko, D. A. Zenyuk, and S. V. Polyakov, “Numerical Simulation of Stationary Electron Tunneling through Potential Barrier,” in Proc. Int. Conf. Simulation of Nonlinear Processes and Systems (Izd-vo MGUP, Moscow, 2008), pp. 100–101 [in Russian].

    Google Scholar 

  5. V. A. Fedirko, D. A. Zenyuk, and S. V. Polyakov, “Numerical Simulation of Stationary Electron Tunneling through Potential Barrier,” in Fundamental Physical-Mathematical Problems and Simulation of Technical-Engineering Systems, Ed. by L. A. Uvarova (Yanus-K, Moscow, 2009), Issue 12, pp. 170–184 [in Russian].

    Google Scholar 

  6. L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nonrelativistic Theory) (Nauka, FM, Moscow, 2004) [in Russian].

    Google Scholar 

  7. M. Abramovits and I. Stigan, Special Functions. Handbook (Nauka, FM, Moscow, 1979) [in Russian].

    Google Scholar 

  8. S. Fluge, Practical Quantum Mechanics (Spring, New York, 1974; Mir, Moscow, 1974), Vol. 1.

    Google Scholar 

  9. D. Bom, Quantum Theory (Prentice Hall, Englewood Cliffs, NJ, 1951; Nauka, FM, Moscow, 1965).

    Google Scholar 

  10. V. A. Fedirko, Chen Mei-Hsin, et al., “An Explicit Model for a Quantum Channel in 2DEG,” Superlatt. Microstruct. 31(5), 207–217 (2002).

    Article  Google Scholar 

  11. A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, FM, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  12. J. Bardeen, “Tunneling from a Many-Particle Point of View,” Phys. Rev. Lett. 6(2), 57–59 (1961).

    Article  Google Scholar 

  13. V. A. Fedirko and V. A. Nikolaeva, “Numerical Simulation of Field Emission from Silicon,” Mat. Model. 9, No. 9, 75–82 (1997).

    MATH  Google Scholar 

  14. V. A. Fedirko, Yu. N. Karamzin, I. G. Zakharova, and S. V. Polyakov, “Simulation of Hot Electron Field Emission from Silicon Microcathode,” Prikl. Fiz., No. 1, 102–111 (1999).

  15. M. I. Elinson and G. F. Vasil’ev, Autoelectronic Emission (Nauka, FM, Moscow, 1958) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fedirko.

Additional information

Original Russian Text © V.A. Fedirko, S.V. Polyakov, D.A. Zenyuk, 2010, published in Matematicheskoe Modelirovanie, 2010, Vol. 22, No. 5, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedirko, V.A., Polyakov, S.V. & Zenyuk, D.A. Matrix method for simulating the tunneling transfer. Math Models Comput Simul 2, 704–713 (2010). https://doi.org/10.1134/S2070048210060050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048210060050

Keywords

Navigation