Skip to main content
Log in

Computational method for turbulent supersonic flows

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The calculation features of the turbulent flows described by the Reynolds equations and the two-equation model of turbulence are examined for an explicit high-order accurate Godunov method. Under these features, a new version of a high order of Godunov’s method is developed for calculating the compressible turbulent flows. To illustrate the capability of the new method, some results of the calculation are shown for a supersonic turbulent jet with a complex shock-wave structure and for a separate flow in a plane nozzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Launder and D.B. Spalding, “The Numerical Computation of Turbulent Flows,” Comp. Meth. Appl. Mech. Engn. 3(3), 269–289 (1974).

    Article  MATH  Google Scholar 

  2. G. S. Glushko, I. E. Ivanov, and I. A. Kryukov, “The Computation of Supersonic Turbulence Flows,” Preprint no. 793, IPMech RAS (IPM RAN, Moscow, 2006).

    Google Scholar 

  3. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comp. Phys. 49, 357–393 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Harten, B. Engguist, S. Osher, and S.R. Chakravarthy, “Uniformly High Order Accurate Essentially Non-Oscillatory Schemes, III,” J. Comp. Phys. 71, 231–303 (1987).

    Article  MATH  Google Scholar 

  5. N. S. Bakhvalov, Numerical Methods (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  6. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, The Numerical Solution of Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  7. C.-W. Shu and S. Osher, “Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes,” J. Comp. Phys. 77, 439–471 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer-Verlag, New York, 1999).

    MATH  Google Scholar 

  9. H. Guillard and A. Murrona, “On the Behavior of Upwind Schemes in the Low Mach Number Limit: II. Godunov Type Schemes,” INRIA, Rapport de reserche (2001), pp. 41–89.

  10. H. Guillard and C. Viozat, “On the Behavior of Upwind Schemes in the Low Mach Number Limit,” Comp. Fluids 96, 28–63 (1999).

    MathSciNet  Google Scholar 

  11. A. J. Chorin, “A Numerical Method for Solving Incompressible Viscous Problems,” J. Comp. Phys. 2, 2–12 (1967).

    Google Scholar 

  12. E. Turkel, “Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations,” J. Comp. Phys. 72, 277–298 (1987).

    Article  MATH  Google Scholar 

  13. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical of Hyperbolic Systems (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  14. I. E. Ivanov and I. A. Kryukov, “Quasi-Monotonic Methods of High Order for Calculating the Internal and Jet Flows of Inviscid Gas,” Mat. Modelir. 8(6), 47–55 (1996).

    MATH  MathSciNet  Google Scholar 

  15. N. I. Tillyaeva, “Godunov’s Modified Schemes Generalization to Arbitrary Irregular Grids,” Uchenye Zapiski TsAGI XVII(2), 18–26 (1986).

    Google Scholar 

  16. R. F. Kunz and B. Lakshminarayana, “Stability of Explicit Navier-Stokes Procedures Using k-ɛ and k-ɛ/Algebraic Reynolds Stress Turbulence Models,” J. Comp. Phys. 103, 141–159 (1992).

    Article  MATH  Google Scholar 

  17. G.A. Gerolymos, “Implicit Multiple Grid Solution of the Compressible Navier-Stokes Equations Using k-ɛ Turbulencs Closure,” AIAA J. 28(10), 1707–1717 (1990).

    Article  Google Scholar 

  18. F. R. Menter, “Zonal Two-Equation k-ω Models for Aerodynamics Flow,” AIAA Pap. 93, 2906 (1993).

    Google Scholar 

  19. L. D. Kral, M. Mani, and J. A. Ladd, “Application of Turbulence Models for Aerodynamic and Propulsion Flowfields,” AIAA J. 34(11), 2291–2298 (1996).

    Article  MATH  Google Scholar 

  20. S. B. Pope, Turbulent Flows (Cambridge Univ. Press, 2000).

  21. C. H. Park and S. O. Park, “On the Limits of Two-Equation Turbulence Models,” Int. J. CFD 19(1), 79–86 (2005).

    MATH  Google Scholar 

  22. F. Liu and X. Zeng, “A Strongly Coupled Time-Marching Method for Solving the Navier-Stokes and k-ω Turbulence Model Equations with Multigrid,” J. Comp. Phys. 128(2), 289–300 (1996).

    Article  MATH  Google Scholar 

  23. F. Ilinca and D. Peiletier, “Positivity Preservation and Adaptive Solution for the k-ɛ Model of Turbulence,” AIAA Pap. 97, 0205 (1997).

    Google Scholar 

  24. G. L. Vasil’tsov, G. S. Glushko, and I. A. Kryukov, “The Calculation of Turbulent Flows for the Areas of Complicated Geometry,” Preprint no. 608 IPMech RAS (IPMekh RAN, 1998).

  25. S.-E. Kim and D. Choudhury, “A Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient, Separated and Complex Flows,” ASME FED 217 (1995).

  26. F. M. White, Viscous Fluid Flow (McGraw-Hill, New York, 1974).

    MATH  Google Scholar 

  27. J. M. Seiner and T. D. Norum, “Experiments of Shock Associated Noise on Supersonic Jets,” AIAA Pap. 79-1526 (1979).

  28. C. A. Hunter, “Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows,” AIAA Pap. 98-3107 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Glushko.

Additional information

Original Russian Text © G.S. Glushko, I.E. Ivanov, I.A. Kryukov, 2009, published in Matematicheskoe Modelirovanie, 2009, Vol. 21, No. 12, pp. 103–121.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushko, G.S., Ivanov, I.E. & Kryukov, I.A. Computational method for turbulent supersonic flows. Math Models Comput Simul 2, 407–422 (2010). https://doi.org/10.1134/S2070048210040010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048210040010

Keywords

Navigation