Skip to main content

Note on \(p\)-Adic Local Functional Equation


Given primes \(\ell\ne p\), we record here a \(p\)-adic valued Fourier theory on a local field over \(\mathbf{Q}_\ell\), which is developed under the perspective of group schemes. As an application, by substituting rigid analysis for complex analysis, it leads naturally to the \(p\)-adic local functional equation at \(\ell\), which strongly resembles the complex one in Tate’s thesis.

This is a preview of subscription content, access via your institution.


  1. Y. Amice, “Interpolation \(p\)-adique,” Bull. Soc. Math. France 92, 117–180 (1964).

    MathSciNet  Article  Google Scholar 

  2. J. Coates, “Values of the Riemann zeta function at the odd positive integers and Iwasawa theory,” in The Bloch-Kato Conjecture for the Riemann Zeta Function, London Math. Soc. Lecture Note Ser. 418, 45–64 (Cambridge Univ. Press, Cambridge, 2015).

    Chapter  Google Scholar 

  3. R. F. Coleman, “Dilogarithms, regulators and \(p\)-adic \(L\)-functions,” Invent. Math. 69 (2), 171–208 (1982).

    MathSciNet  Article  Google Scholar 

  4. P. Colmez, ”Fonctions \(L\) \(p\)-adiques,” in Séminaire Bourbaki, Vol. 1998/99, Astérisque 266 Exp. No. 851, 3, 21–58 (2000).

    Google Scholar 

  5. D. Delbourgo, “A Dirichlet series expansion for the \(p\)-adic zeta-function,” J. Aust. Math. Soc. 81 (2), 215–224 (2006).

    MathSciNet  Article  Google Scholar 

  6. B. H. Gross, “\(p\)-Adic \(L\)-series at \(s=0\),” J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (3) 979–994 (1981).

    MathSciNet  MATH  Google Scholar 

  7. K. Iwasawa, “Letter to J. Dieudonné,” in Zeta Functions in Geometry (Tokyo, 1990), Adv. Stud. Pure Math. 21, 445–450 (Kinokuniya, Tokyo, 1992).

    Chapter  Google Scholar 

  8. N. M. Katz, “Another look at \(p\)-adic \(L\)-functions for totally real fields,” Math. Ann. 255 (1), 33–43 (1981).

    MathSciNet  Article  Google Scholar 

  9. N. M. Katz, “Divisibilities, congruences, and Cartier duality,” J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (3), 667–678 (1981).

    MathSciNet  MATH  Google Scholar 

  10. N. Koblitz, “A new proof of certain formulas for \(p\)-adic \(L\)-functions,” Duke Math. J. 46 (2), 455–468 (1979).

    MathSciNet  Article  Google Scholar 

  11. B. Mazur and P. Swinnerton-Dyer, “Arithmetic of Weil curves,” Invent. Math. 25, 1–61 (1974).

    MathSciNet  Article  Google Scholar 

  12. W. Sinnott, “\(\Gamma\)-transforms of rational function measures on \({\bf Z}_S\),” Invent. Math. 89 (1), 139–157 (1987).

    MathSciNet  Article  Google Scholar 

  13. J. T. Tate, “Fourier analysis in number fields, and Hecke’s zeta-functions,” in Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), pp. 305–347 (Thompson, Washington, D.C., 1967).

    Google Scholar 

  14. A. C. M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics 51 (Marcel Dekker, Inc., New York,1978).

    MATH  Google Scholar 

Download references


The author is very thankful to Antonio Lei, for his constant encouragement and for reading the draft and providing many helpful suggestions on the organization and the grammar; to Yiannis Sakellaridis for the many inspirational discussions in Newark. We would also like to thank Professor John Coates for kindly pointing out an important application of a potential global functional equation in Iwasawa theory. Finally, we thank the referees for their careful reading and helpful suggestions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Luochen Zhao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, L. Note on \(p\)-Adic Local Functional Equation. P-Adic Num Ultrametr Anal Appl 14, 238–264 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • local functional equation
  • Fourier transform
  • group scheme
  • Cartier duality