### Abstract

The main result of this paper is a formula for the integral

where \(K\) is a \(p\)-field (i.e., a nonarchimedean local field) with canonical absolute value \(|\cdot|\), \(N\geq 2\), \(a,b\in \mathbb{C} \), the function \(\rho:K^N\to \mathbb{C}\) has mild growth and decay conditions and factors through the norm \(\|x\|=\max_i|x_i|\), and \(|dx|\) is the usual Haar measure on \(K^N\). The formula is a finite sum of functions described explicitly by combinatorial data, and the largest open domain of values \((s_{ij})_{i<j}\in\mathbb{C}^{\binom{N}{2}}\) on which the integral converges absolutely is given explicitly in terms of these data and the parameters \(a\), \(b\), \(N\), and \(K\). We then specialize the formula to \(s_{ij}=\mathfrak{q}_i\mathfrak{q}_j\beta\), where \(\mathfrak{q}_1,\mathfrak{q}_2,\dots,\mathfrak{q}_N>0\) represent the charges of an \(N\)-particle log-Coulomb gas in \(K\) with background density \(\rho\) and inverse temperature \(\beta\). From this specialization we obtain a mixed-charge \(p\)-field analogue of Mehta’s integral formula, as well as formulas and low-temperature limits for the joint moments of \(\max_{i<j}|x_i-x_j|\) (the diameter of the gas) and \(\min_{i<j}|x_i-x_j|\) (the minimum distance between its particles).

This is a preview of subscription content, access via your institution.

## References

- 1
M. Bocardo-Gaspar, H. García-Compeán and W. A. Zúñiga-Galindo, “Regularization of \(p\)-adic string amplitudes, and multivariate local zeta functions,” Lett. Math. Phys.

**109**(5), 1167–1204 (2019). - 2
J. Denef, “The rationality of the Poincaré series associated to the \(p\)-adic points on a variety,” Invent. Math.

**77**(1), 1–23 (1984). - 3
P. J. Forrester,

*Log-Gases and Random Matrices*, London Mathematical Society Monographs Series**34**(Princeton Univ. Press, Princeton, NJ, 2010). - 4
P. J. Forrester and S. Ole Warnaar, “The importance of the Selberg integral,” Bull. Amer. Math. Soc. (N.S.)

**45**(4), 489–534 (2008). - 5
H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II,” Ann. Math. (2)

**79**, 109–203 (1964); ibid. (2)**79**, 205–326 (1964). - 6
J. Igusa, “Complex powers and asymptotic expansions. I. Functions of certain types,”

*Collection of Articles Dedicated to Helmut Hasse on His Seventy-Fifth Birthday, II*, J. Reine Angew. Math.**268/269**, 110–130 (1974). - 7
J. Igusa, “Complex powers and asymptotic expansions. II. Asymptotic expansions,” J. Reine Angew. Math.

**278/279**, 307–321 (1975). - 8
F. Loeser, “Fonctions zêta locales d’igusa à plusieurs variables, intégration dans les fibres, et discriminants,” Annal. Sci. de l’École Normale Supérieure

**4e série, 22**(3), 435–471 (1989). - 9
B. Rider, C. D. Sinclair and Y. Xu, “A solvable mixed charge ensemble on the line: global results,” Probab. Theory Relat. Fields

**155**(1-2), 127–164 (2013). - 10
S. Serfaty,

*Coulomb Gases and Ginzburg-Landau Vortices*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS) (Zürich, 2015). - 11
C. D. Sinclair, “The partition function of multicomponent log-gases,” J. Phys. A

**45**(16), 165002, 18 (2012). - 12
C. D. Sinclair, “Non-Archimedean electrostatics,” arXiv:2002.07121 (2020).

- 13
André Weil,

*Basic Number Theory*, Classics in Mathematics (Springer-Verlag, Berlin, 1995). - 14
W. A. Zúñiga-Galindo and S. M. Torba, “Non-Archimedean Coulomb gases,” J. Math. Phys.

**61**(1), 013504, 16 (2020). - 15
W. A. Zúñiga-Galindo, B. A. Zambrano-Luna and E. León-Cardenal, “Graphs, local zeta functions, Log-Coulomb Gases, and phase transitions at finite temperature,” arXiv:2003.08532 (2020).

## Acknowledgments

I would like to sincerely thank my advisor Chris Sinclair for all of the support, advice, and stimulating conversations that first inspired this work and led to many improvements.

## Author information

### Affiliations

### Corresponding author

## Rights and permissions

## About this article

### Cite this article

Joe, W. log-Coulomb Gas with Norm-Density in \(p\)-Fields.
*P-Adic Num Ultrametr Anal Appl* **13, **1–43 (2021). https://doi.org/10.1134/S2070046621010015

Received:

Revised:

Accepted:

Published:

Issue Date:

### Keywords

- nonarchimedean local field
- log-Coulomb gas
- local zeta function
- set partition
- tree