An Arithmetic Approach to a Four-Parameter Generalization of Some Special Sequences


In this paper, we study arithmetic properties of the recently introduced sequence \(F^{i}_{r,s}(k,n)\), for some values of its parameters. These new numbers simultaneously generalizes a number of well-known sequences, including the Fibonacci, Pell, Jacobsthal, Padovan, and Narayana numbers. We generalize a recent arithmetic property of the Fibonacci numbers to \(F^{1}_{r,s}(2,n)\). In addition, we also study the \(2\)-adic order and find factorials in this sequence for certain choices of the parameters. All the proof techniques required to prove our results are elementary.

This is a preview of subscription content, access via your institution.


  1. 1

    T. Amdeberhan, X. Chen, V. Moll and B. E. Sagan, “Generalized Fibonacci polynomials and Fibonomial coefficients,” Ann. Comb. 18 (4), 541–562 (2014).

    MathSciNet  Article  Google Scholar 

  2. 2

    U. Bednarz, D. Brod, I. Wloch and M. Wolowiec-Musial, “On three types of (2, k)-distance Fibonacci numbers and number decompositions,” Ars Combin. 118, 391–405 (2015).

    MathSciNet  MATH  Google Scholar 

  3. 3

    U. Bednarz, A. Wloch and M. Wolowiec-Musial, “Distance Fibonacci numbers, their interpretations and matrix generators,” Comment. Math. 53, 35–46 (2013).

    MathSciNet  MATH  Google Scholar 

  4. 4

    A. T. Benjamin, S. S. Plott, and J. A. Sellers, “Tiling proofs of recent sum identities involving Pell numbers,” Ann. Comb. 12 (3), 271–278 (2008).

    MathSciNet  Article  Google Scholar 

  5. 5

    R. da Silva, K. S. Oliveira and A. C. G. Neto, “On a four-parameter generalization of some special sequences,” Discr. Appl. Math. 243, 154–171 (2018).

    MathSciNet  Article  Google Scholar 

  6. 6

    S. Falcon, “Generalized \((k, r)\)-Fibonacci numbers,” General Math. Notes 25 (2), 148–158 (2014).

    Google Scholar 

  7. 7

    C. Flaut and V. Shpakivskyi, “On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions,” Adv. Appl. Clifford Algebr. 23 (3), 673–688 (2013).

    MathSciNet  Article  Google Scholar 

  8. 8

    J. H. Halton, “On the divisibility properties of Fibonacci numbers”, Fibonacci Quart. 4 (3), 217–240 (1966).

    MathSciNet  MATH  Google Scholar 

  9. 9

    P. Haukkanen, “A note on Horadam’s sequence”, Fibonacci Quart. 40 (4), 358–361 (2002).

    MathSciNet  MATH  Google Scholar 

  10. 10

    A. F. Horadam, “Basic Properties of Certain Generalized Sequence of Numbers”, Fibonacci Quart. 3 (3), 161–176 (1965).

    MathSciNet  MATH  Google Scholar 

  11. 11

    E. Kiliç, “The Binet formula, sums and representations of generalized Fibonacci \(p\)-numbers,” Eur. J. Combin. 29, 701–711 (2008).

    MathSciNet  Article  Google Scholar 

  12. 12

    T. Koshy, Fibonacci and Lucas Numbers with Aplications (Wiley, New York, 2001).

    Google Scholar 

  13. 13

    A. Kreutz, J. Lelis, D. Marques and P. Trojovský, “The \(p\)-Adic order of the k-Fibonacci and k-Lucas numbers”, \(p\)-Adic Numb. Ultrametr. Anal. Appl. 9 (1), 15–21 (2017).

    MathSciNet  Article  Google Scholar 

  14. 14

    T. Lengyel, “The order of the Fibonacci and Lucas numbers”, Fibonacci Quart. 33 (3), 234–239 (1995).

    MathSciNet  MATH  Google Scholar 

  15. 15

    I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers (John Wiley & Sons, 2008).

    Google Scholar 

  16. 16

    P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (Springer Science & Business Media, 2006).

    Google Scholar 

  17. 17

    C. Sanna, “The \(p\)-adic valuation of Lucas sequences”, Fibonacci Quart. 54 (2), 118–124 (2016).

    MathSciNet  MATH  Google Scholar 

  18. 18

    N. Yilmaz and N. Taskara, “Matrix sequences in terms of Padovan and Perrin numbers”, J. Appl. Math. 2013 Article ID 941673 (2013).

    MathSciNet  Article  Google Scholar 

Download references


The authors thank the anonymous referee for his/her helpful comments and suggestions.

Author information



Corresponding author

Correspondence to R. da Silva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, R., da Graça Neto, A.C. & de Oliveira, K.S. An Arithmetic Approach to a Four-Parameter Generalization of Some Special Sequences. P-Adic Num Ultrametr Anal Appl 12, 322–332 (2020).

Download citation


  • generalized Fibonacci number
  • Pell numbers
  • Padovan numbers
  • Jacobsthal numbers
  • Narayana numbers
  • arithmetic properties