Abstract
In this paper, we study arithmetic properties of the recently introduced sequence \(F^{i}_{r,s}(k,n)\), for some values of its parameters. These new numbers simultaneously generalizes a number of well-known sequences, including the Fibonacci, Pell, Jacobsthal, Padovan, and Narayana numbers. We generalize a recent arithmetic property of the Fibonacci numbers to \(F^{1}_{r,s}(2,n)\). In addition, we also study the \(2\)-adic order and find factorials in this sequence for certain choices of the parameters. All the proof techniques required to prove our results are elementary.
This is a preview of subscription content, access via your institution.
References
- 1
T. Amdeberhan, X. Chen, V. Moll and B. E. Sagan, “Generalized Fibonacci polynomials and Fibonomial coefficients,” Ann. Comb. 18 (4), 541–562 (2014).
- 2
U. Bednarz, D. Brod, I. Wloch and M. Wolowiec-Musial, “On three types of (2, k)-distance Fibonacci numbers and number decompositions,” Ars Combin. 118, 391–405 (2015).
- 3
U. Bednarz, A. Wloch and M. Wolowiec-Musial, “Distance Fibonacci numbers, their interpretations and matrix generators,” Comment. Math. 53, 35–46 (2013).
- 4
A. T. Benjamin, S. S. Plott, and J. A. Sellers, “Tiling proofs of recent sum identities involving Pell numbers,” Ann. Comb. 12 (3), 271–278 (2008).
- 5
R. da Silva, K. S. Oliveira and A. C. G. Neto, “On a four-parameter generalization of some special sequences,” Discr. Appl. Math. 243, 154–171 (2018).
- 6
S. Falcon, “Generalized \((k, r)\)-Fibonacci numbers,” General Math. Notes 25 (2), 148–158 (2014).
- 7
C. Flaut and V. Shpakivskyi, “On generalized Fibonacci quaternions and Fibonacci-Narayana quaternions,” Adv. Appl. Clifford Algebr. 23 (3), 673–688 (2013).
- 8
J. H. Halton, “On the divisibility properties of Fibonacci numbers”, Fibonacci Quart. 4 (3), 217–240 (1966).
- 9
P. Haukkanen, “A note on Horadam’s sequence”, Fibonacci Quart. 40 (4), 358–361 (2002).
- 10
A. F. Horadam, “Basic Properties of Certain Generalized Sequence of Numbers”, Fibonacci Quart. 3 (3), 161–176 (1965).
- 11
E. Kiliç, “The Binet formula, sums and representations of generalized Fibonacci \(p\)-numbers,” Eur. J. Combin. 29, 701–711 (2008).
- 12
T. Koshy, Fibonacci and Lucas Numbers with Aplications (Wiley, New York, 2001).
- 13
A. Kreutz, J. Lelis, D. Marques and P. Trojovský, “The \(p\)-Adic order of the k-Fibonacci and k-Lucas numbers”, \(p\)-Adic Numb. Ultrametr. Anal. Appl. 9 (1), 15–21 (2017).
- 14
T. Lengyel, “The order of the Fibonacci and Lucas numbers”, Fibonacci Quart. 33 (3), 234–239 (1995).
- 15
I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers (John Wiley & Sons, 2008).
- 16
P. Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory (Springer Science & Business Media, 2006).
- 17
C. Sanna, “The \(p\)-adic valuation of Lucas sequences”, Fibonacci Quart. 54 (2), 118–124 (2016).
- 18
N. Yilmaz and N. Taskara, “Matrix sequences in terms of Padovan and Perrin numbers”, J. Appl. Math. 2013 Article ID 941673 (2013).
Acknowledgments
The authors thank the anonymous referee for his/her helpful comments and suggestions.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
da Silva, R., da Graça Neto, A.C. & de Oliveira, K.S. An Arithmetic Approach to a Four-Parameter Generalization of Some Special Sequences. P-Adic Num Ultrametr Anal Appl 12, 322–332 (2020). https://doi.org/10.1134/S2070046620040068
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- generalized Fibonacci number
- Pell numbers
- Padovan numbers
- Jacobsthal numbers
- Narayana numbers
- arithmetic properties