Skip to main content
Log in

Cite this article

Abstract

In this outline of a program, based on rigorous renormalization group theory, we introduce new definitions which allow one to formulate precise mathematical conjectures related to conformal invariance as studied by physicists in the area known as higher-dimensional conformal bootstrap which has developed at a breathtaking pace over the last few years. We also explore a second theme, intimately tied to conformal invariance for random distributions, which can be construed as a search for very general first and second-quantized Kolmogorov-Chentsov Theorems. First-quantized refers to regularity of sample paths. Second-quantized refers to regularity of generalized functionals or Hida distributions and relates to the operator product expansion.We formulate this program in both the Archimedean and p-adic situations. Indeed, the study of conformal field theory and its connections with probability provides a golden opportunity where p-adic analysis can lead the way towards a better understanding of open problems in the Archimedean setting. Finally, we present a summary of progress made on a p-adic hierarchical model and point out possible connections to number theory. Parts of this article were presented in author’s talk at the 6th International Conference on p-adicMathematical Physics and its Applications,Mexico 2017.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. A. Abdesselam, Renormalisation Constructive Explicite, Ph.D. Thesis, école Polytechnique (1997). Available in part at http://people.virginia.edu/~aa4cr/these.pdf.

    Google Scholar 

  2. A. Abdesselam, “A complete renormalization group trajectory between two fixed points,” Comm. Math. Phys. 276 (3), 727–772 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Abdesselam, “Renormalization group trajectories between two fixed points,” XVIth International Congress onMathematical Physics, Prague, Czech Republic, 3–8 August 2009. Ed. P. Exner, pp. 346–351 (World Scientific, Singapore, 2010).

    Google Scholar 

  4. A. Abdesselam, “A massless quantum field theory over the p-adics,” Oberwolfach Reports 8, 781–824 (2011), proceedings of the 2011 Oberwolfach meeting “The Renormalization Group” organized by M. Disertori, J. Feldman and M. Salmhofer. Available at http://arxiv.org/abs/1104.2937.

    MathSciNet  Google Scholar 

  5. A. Abdesselam, “QFT, RG, and all that, for mathematicians,” eleven pages. arXiv:1311.4897[math.PR] (2013).

    Google Scholar 

  6. A. Abdesselam, “Proof of a 43-year-old prediction by Wilson on anomalous scaling for a hierarchical composite field,” Slides of 06/11/2015 talk given at the conference Constructive Renormalization Group: A Conference in Memory of Pierluigi Falco, Roma, Italy. Available at http://people.virginia.edu/~aa4cr/FalcoConferenceTalk11June2015.pdf.

  7. A. Abdesselam, “A second-quantized Kolmogorov-Chentsov theorem,” arXiv:1604.05259[math.PR] (2016).

    Google Scholar 

  8. A. Abdesselam, A. Chandra and G. Guadagni, “Rigorous quantum field theory functional integrals over the p-adics: research announcement,” arXiv:1210.7717[math.PR] (2012).

    Google Scholar 

  9. A. Abdesselam, A. Chandra and G. Guadagni, “Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions,” arXiv:1302.5971[math.PR] (2013).

    Google Scholar 

  10. A. Abdesselam, A. Chandra and G. Guadagni, “Rigorous quantum field theory functional integrals over the p-adics II: full scale invariance,” in preparation.

  11. R. J. Adler and J. E. Taylor, Random Fields and Geometry, Springer Monographs in Mathematics (Springer, New York, 2007).

    MATH  Google Scholar 

  12. L. V. Ahlfors, “Cross-ratios and Schwarzian derivatives in R n,” Complex Analysis, Eds. J. Hersch and A. Huber, pp. 1–15 (Birkhäuser, Basel, 1988).

    Google Scholar 

  13. A. Aizenbud and D. Gourevitch, “Schwartz functions on Nash manifolds,” Int. Math. Res. Not. IMRN 5, Art. ID rnm 155, 37 pp. (2008).

    MATH  MathSciNet  Google Scholar 

  14. M. Aizenman and R. Fernández, “Critical exponents for long-range interactions, Lett. Math. Phys. 16 (1), 39–49 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, London Mathematical Society Lecture Note Series 370 (Cambridge Univ. Press, Cambridge, 2010).

  16. R. Allez, R. Rhodes and V. Vargas, “Lognormal *-scale invariant random measures,” Probab. Theory Related Fields 155 (3–4), 751–788 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  17. M. C. Angelini, G. Parisi and F. Ricci-Tersenghi, “Relations between short-range and long-range Ising models,” Phys. Rev. E 89 (6), 062120 (2014).

    Article  Google Scholar 

  18. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren derMathematischenWissenschaften 343 (Springer, Heidelberg, 2011).

  19. C. Bargetz, “Explicit representations of spaces of smooth functions and distributions,” J. Math. Anal. Appl. 424 (2), 1491–1505 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  20. V. Bargmann, “Irreducible unitary representations of the Lorentz group,” Ann. Math. (2) 48 (3), 568–640 (1947).

    Article  MATH  MathSciNet  Google Scholar 

  21. R. Bauerschmidt, D. C. Brydges and G. Slade, “Scaling limits and critical behaviour of the 4-dimensional n-component |φ|4 spin model,” J. Stat. Phys. 157 (4–5), 692–742 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  22. R. Bauerschmidt, D. C. Brydges and G. Slade, “Structural stability of a dynamical system near a nonhyperbolic fixed point,” Ann. Henri Poincaré 16 (4), 1033–1065 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Bauerschmidt, D. C. Brydges and G. Slade, “A renormalisation groupmethod. III. Perturbative analysis,” J. Stat. Phys. 159 (3), 492–529 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Bauerschmidt, D. C. Brydges and G. Slade, “Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis,” Comm. Math. Phys. 337 (2), 817–877 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Bauerschmidt, D. C. Brydges and G. Slade, “Critical two-point function of the 4-dimensional weakly self-avoiding walk,” Comm. Math. Phys. 338 (1), 169–193 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  26. J. J. Becnel, “Equivalence of topologies and Borel fields for countably-Hilbert spaces,” Proc. Amer. Math. Soc. 134 (2), 581–590 (electronic, 2006).

    Article  MATH  MathSciNet  Google Scholar 

  27. C. Behan, L. Rastelli, S. Rychkov and B. Zan, “A scaling theory for the long-range to short-range crossover and an infrared duality,” J. Phys. A 50 (35), 354002, 48 pp. (2017).

    Article  MATH  MathSciNet  Google Scholar 

  28. A. A. Belavin, A. M. Polyakov and A.B. Zamolodchikov, “Infinite conformal symmetry of critical fluctuations in two dimensions,” J. Statist. Phys. 34 (5–6), 763–774 (1984).

    Article  MathSciNet  Google Scholar 

  29. A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory,” Nucl. Phys. B 241 (2), 333–380 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  30. P. Billingsley, Convergence of Probability Measures, Second ed., Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication, (John Wiley & Sons, Inc., New York, 1999).

    Book  MATH  Google Scholar 

  31. T. Blanchard, M. Picco and M. A. Rajabpour, “Influence of long-range interactions on the critical behavior of the Ising model,” Europhysics Lett. 101 (5), 56003 (2013).

    Article  Google Scholar 

  32. P. M. Bleher and M. D. Missarov, “The equations of Wilson’s renormalization group and analytic renormalization. I. General results,” Comm. Math. Phys. 74 (3), 235–254 (1980).

    Article  MathSciNet  Google Scholar 

  33. P. M. Bleher and M. D. Missarov, “The equations of Wilson’s renormalization group and analytic renormalization. II. Solution of Wilson’s equations,” Comm. Math. Phys. 74 (3), 255–272 (1980).

    Article  MathSciNet  Google Scholar 

  34. P. M. Bleher and Ja. G. Sinai, “Investigation of the critical point in models of the type of Dyson’s hierarchical models,” Comm. Math. Phys. 33 (1), 23–42 (1973).

    Article  MathSciNet  Google Scholar 

  35. P. M. Bleher and Ya. G. Sinai, “Critical indices for Dyson’s asymptotically-hierarchical models,” Comm. Math. Phys. 45 (3), 247–278 (1975).

    Article  MathSciNet  Google Scholar 

  36. R. M. Blumenthal and R. K. Getoor, “Some theorems on stable processes,” Trans. Amer. Math. Soc. 95 (2), 263–273 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  37. J. de Boer, E. Verlinde and H. Verlinde, “On the holographic renormalization group,” J. High Energy Phys. 8, 3, 15 pp. (2000).

    Article  MATH  MathSciNet  Google Scholar 

  38. V. I. Bogachev, Gaussian Measures. Mathematical Surveys and Monographs 62 (American Math. Society, Providence, RI, 1998).

  39. N. N. Bogolubov, A. A. Logunov, A. I. Oksak and I. T. Todorov, General Principles of Quantum Field Theory, Translated from the Russian by G. G. Gould. Mathematical Physics and Applied Mathematics 10 (Kluwer Academic Publ. Group, Dordrecht, 1990).

  40. P. Breuer and P. Major, “Central limit theorems for nonlinear functionals of Gaussian fields,” J. Multivariate Anal. 13 (3), 425–441 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  41. E. Brezin, G. Parisi and F. Ricci-Tersenghi, “The crossover region between long-range and short-range interactions for the critical exponent,” J. Stat. Phys. 157 (4), 855–868 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Brouder, N. V. Dang and F. Hélein, “A smooth introduction to the wavefront set,” J. Phys. A 47 (44), 443001, 30 pp. (2014).

    Article  MATH  MathSciNet  Google Scholar 

  43. F. Bruhat, “Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes p-adiques,” Bull. Soc. Math. France 89, 43–75 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Brydges, “The renormalization group and self-avoiding walk,” Random Walks, Random Fields, and Disordered Systems, Eds. M. Biskup, J. Černý and R. Kotecký, Lect. Notes Math. 2144, pp. 65–116 (Springer, Cham-Heidelberg-New York-Dordrecht-London, 2015).

    Article  MATH  MathSciNet  Google Scholar 

  45. D. Brydges, J. Dimock and T. R. Hurd, “The short distance behavior of (f4)3,” Comm. Math. Phys. 172 (1), 143–186 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  46. D. C. Brydges, J. Fröhlich and A. D. Sokal, “A new proof of the existence and nontriviality of the continuum φ 42 and φ 43 quantum field theories,” Comm. Math. Phys. 91 (2), 141–186 (1983).

    Article  MathSciNet  Google Scholar 

  47. D. C. Brydges, P. K. Mitter and B. Scoppola, “Critical (Φ4)3,ϵ,” Comm. Math. Phys. 240, 281–327 (2003).

    Article  MathSciNet  Google Scholar 

  48. D. C. Brydges and G. Slade, “A renormalisation group method. I. Gaussian integration and normed algebras,” J. Stat. Phys. 159 (3), 421–460 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  49. D. C. Brydges and G. Slade, “A renormalisation group method. II. Approximation by local polynomials,” J. Stat. Phys. 159 (3), 461–491 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  50. D. C. Brydges and G. Slade, “A renormalisation group method. IV. Stability analysis,” J. Stat. Phys. 159 (3), 530–588 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  51. D. C. Brydges and G. Slade, “A renormalisation group method. V. A single renormalisation group step,” J. Stat. Phys. 159 (3), 589–667 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  52. J.-F. Burnol, “The explicit formula and a propagator,” Preprint arXiv:math/9809119[math.NT], (1998).

    Google Scholar 

  53. J.-F. Burnol, “The explicit formula in simple terms,” Preprint arXiv:math/9810169[math.NT], (1998).

    Google Scholar 

  54. L. Caffarelli and L. Silvestre, “An extension problemrelated to the fractional Laplacian,” Comm. Partial Diff. Equat. 32 (7–9), 1245–1260 (2007).

    Article  MATH  Google Scholar 

  55. F. Camia, C. Garban and C. Newman, “Planar Ising magnetization field I. Uniqueness of the critical scaling limit,” Ann. Probab. 43, 528–571 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  56. R. Catellier and K. Chouk, “Paracontrolled distributions and the 3-dimensional stochastic quantization equation,” Preprint arXiv:1310.6869[math.PR], (2013).

    MATH  Google Scholar 

  57. A. Chandra, Construction and Analysis of a HierarchicalMasslessQuantum Field Theory, Ph.D.Thesis (University of Virginia, 2014). Available at http://libra.virginia.edu/catalog/libra-oa:7070.

    Google Scholar 

  58. A. Chandra and H. Weber, “Stochastic PDEs, regularity structures, and interacting particle systems,” Ann. Fac. Sci. ToulouseMath. (6) 26 (4), 847–909 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  59. D. Chelkak, C. Hongler and K. Izyurov, “Conformal invariance of spin correlations in the planar Ising model,” Ann.Math. (2) 181, 1087–1138 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  60. T. Chen, J. Fröhlich and A. Pizzo, “Infraparticle scattering states in non-relativistic QED. I. The Bloch-Nordsieck paradigm,” Comm. Math. Phys. 294 (3), 761–825 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  61. A. Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function,” SelectaMath. (N.S.) 5 (1), 29–106 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  62. G. Da Prato and L. Tubaro, “Wick powers in stochastic PDEs: an introduction,” Preprint, (2007). Available at http://eprints.biblio.unitn.it/1189/.

    Google Scholar 

  63. N. V. Dang, “The extension of distributions on manifolds, a microlocal approach,” Ann. Henri Poincaré 17 (4), 819–859 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  64. I. Daubechies, A. Grossmann and Y. Meyer, “Painless nonorthogonal expansions,” J. Math. Phys. 27 (5), 1271–1283 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  65. B. Delamotte, M. Tissier and N. Wschebor, “Scale invariance implies conformal invariance for the threedimensional Ising model,” Phys. Rev. E 93 (1), 012144, 9 pp. (2016).

    Article  MathSciNet  Google Scholar 

  66. C. Deninger, “Number theory and dynamical systems on foliated spaces,” Jahresber. Deutsch. Math.-Verein. 103 (3), 79–100 (2001).

    MATH  MathSciNet  Google Scholar 

  67. W. De Roeck and A. Kupiainen, “Approach to ground state and time-independent photon bound for massless spin-boson models,” Ann. Henri Poincaré 14 (2), 253–311 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  68. P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics (Springer-Verlag, New York, 1997).

    Book  MATH  Google Scholar 

  69. R. L. Dobrushin, “Gaussian and their subordinated self-similar random generalized fields,” Ann. Probab. 7 (1), 1–28 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  70. R. L. Dobrushin, “Automodel generalized random fields and their renorm group,” Multicomponent Random Systems, Ed. R. L. Dobrushin and Ya. G. Sinai, Adv. Probab. Related Topics 6, pp. 153–198 (Marcel Dekker, New York, 1980).

    MATH  MathSciNet  Google Scholar 

  71. F. A. Dolan and H. Osborn, “Conformal four point functions and the operator product expansion,” Nucl. Phys. B 599, 459–496 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  72. F. A. Dolan and H. Osborn, “Conformal partial waves and the operator product expansion,” Nucl. Phys. B 678, 491–507 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  73. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich and E. I. Zelenov, “p-Adic mathematical physics: the first 30 years,” p-Adic Numbers Ultrametric Anal. Appl. 9 (2), 87–121 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  74. I. T. Drummond and G.M. Shore, “Conformal anomalies for interacting scalar fields in curved spacetime,” Phys. Rev. D 19 (4), 1134–1143 (1979).

    Article  MathSciNet  Google Scholar 

  75. J. Dubédat, “Exact bosonization of the Ising model,” Preprint arXiv:1112.4399[math.PR], (2011).

    Google Scholar 

  76. J.-L. Dunau and H. Sénateur, “Une caracterisation du type de la loi de Cauchy-conforme sur Rn,” Probab. Theory Rel. Fields 77 (1), 129–135 (1988).

    Article  MATH  Google Scholar 

  77. B. Duplantier, R. Rhodes, S. Sheffield and V. Vargas, “Log-correlated Gaussian fields: an overview,” Preprint arXiv:1407.5605[math.PR], (2014).

    MATH  Google Scholar 

  78. M. Dütsch and K.-H. Rehren, “A comment on the dual field in the AdS-CFT correspondence,” Lett.Math. Phys. 62 (2), 171–184 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  79. M. Dütsch and K.-H. Rehren, “Generalized free fields and the AdS-CFT correspondence,” Ann. Henri Poincaré 4 (4), 613–635 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  80. W. Dybalski, “Towards a construction of inclusive collision cross-sections in the massless Nelson model,” Ann. Henri Poincaré 13 (6), 1427–1449 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  81. F. J. Dyson, “Existence of a phase-transition in a one-dimensional Ising ferromagnet,” Comm. Math. Phys. 12 (2), 91–107 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  82. F. J. Dyson, “An Ising ferromagnet with discontinuous long-range order,” Comm. Math. Phys. 21 (4), 269–283 (1971).

    Article  MathSciNet  Google Scholar 

  83. S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, “Solving the 3D Ising model with the conformal bootstrap,” Phys. Rev. D 86, 025022 (2012).

    Article  MATH  Google Scholar 

  84. P. Falco, “Kosterlitz-Thouless transition line for the two dimensional Coulomb gas,” Comm. Math. Phys. 312 (2), 559–609 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  85. P. Falco, “Critical exponents of the two dimensional Coulomb gas at the Berezinskii-Kosterlitz-Thouless transition,” Preprint arXiv:1311.2237[math-ph], (2013).

    Google Scholar 

  86. X. Fernique, “Processus linéaires, processus généralisés,” Ann. Inst. Fourier (Grenoble) 17 (1), 1–92 (1967).

    Article  MATH  MathSciNet  Google Scholar 

  87. M. E. Fisher, S.-K. Ma and B. G. Nickel, “Critical exponents for long-range interactions,” Phys. Rev. Lett. 29 (14), 917–920 (1972).

    Article  Google Scholar 

  88. H. Föllmer, “Calcul d’Itôsans probabilités,” Séminaire de Probabilités XV, Eds. J. Azéma and M. Yor, Lect. Notes in Math. 850, pp. 143–150 (Springer, Berlin, 1981).

    Google Scholar 

  89. R. L. Frank and E.H. Lieb, “Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality,” Calc. Var. Partial Diff. Equat. 39 (1–2), 85–99 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  90. M. Frazier and B. Jawerth, “A discrete transform and decompositions of distribution spaces,” J. Funct. Anal. 93 (1), 34–170 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  91. E. Frenkel, “Lectures on the Langlands program and conformal field theory,” Frontiers in Number Theory, Physics, and Geometry. II, Eds. P. Cartier, B. Julia, P. Moussa and P. Vanhove, pp. 387–533, (Springer-Verlag, Berlin, 2007).

    Chapter  Google Scholar 

  92. J. Fröhlich, B. Simon and T. Spencer, “Infrared bounds, phase transitions and continuous symmetry breaking,” Comm. Math. Phys. 50 (1), 79–95 (1976).

    Article  MathSciNet  Google Scholar 

  93. M. Furlan and J.-C. Mourrat, “A tightness criterion for random fields, with application to the Ising model,” Electron. J. Probab. 22, 97, 29 pp. (2017).

    Article  MATH  MathSciNet  Google Scholar 

  94. K. Gawȩdzki and A. Kupiainen, “Block spin renormalization group for dipole gas and (∇φ)4,” Ann. Physics 147 (1), 198–243 (1983).

    Article  MathSciNet  Google Scholar 

  95. I. M. Gel’fand, M. I. Graev, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions (W. B. Saunders Co., Philadelphia-London-Toronto, 1969).

    MATH  Google Scholar 

  96. I.M. Gel’fand, M. I. Graev and N. Ya. Vilenkin, Generalized Functions. Vol. 5: Integral Geometry and Representation Theory (Academic Press, New York-London, 1966).

  97. I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions. Vol. 4: Applications of Harmonic Analysis (Academic Press, New York-London, 1964).

  98. J. Glimm and A. Jaffe, “Critical exponents and elementary particles,” Comm. Math. Phys. 52 (3), 203–209 (1977).

    Article  MathSciNet  Google Scholar 

  99. J. Glimm and A. Jaffe, Quantum Physics. A Functional Integral Point of View, Second edition (Springer, New York, 1987).

    MATH  Google Scholar 

  100. G. Gori and A. Trombettoni, “Conformal invariance in three dimensional percolation,” J. Stat.Mech. Theory Exp. P07014 (2015).

    Google Scholar 

  101. M. Gubinelli, P. Imkeller and N. Perkowski, “Paracontrolled distributions and singular PDEs,” Forum Math. Pi 3, e6, 75 pp. (2015).

    Article  MATH  MathSciNet  Google Scholar 

  102. M. Hairer, “A theory of regularity structures,” Invent. Math. 198 (2), 269–504 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  103. M. Hairer, “Regularity structures and the dynamical Φ 3 4 model,” Current Developments in Mathematics 2014, pp. 1–49 (Int. Press, Somerville, MA, 2016).

    Google Scholar 

  104. P. Hartman, “On isometries and on a theorem of Liouville,” Math. Zeit. 69, 202–210 (1958).

    Article  MATH  MathSciNet  Google Scholar 

  105. H. Hasse, “Zur Theorie der abstrakten elliptischen Funktionenkörper III. Die Struktur des Meromorphismenrings. Die Riemannsche Vermutung,” J. Reine Angew.Math. 175, 193–208 (1936).

    MATH  MathSciNet  Google Scholar 

  106. I. Heemskerk and J. Polchinski, “Holographic and Wilsonian renormalization groups,” J. High Energy Phys. 6, 031, 28 pp. (2011).

    Article  MATH  MathSciNet  Google Scholar 

  107. T. Hida, Brownian Motion, Applications of Mathematics 11 (Springer-Verlag, New York-Berlin, 1980).

  108. T. Hida, Takeyuki, I. Kubo, H. Nomoto and H. Yoshizawa, “On projective invariance of Brownian motion,” Publ. Res. Inst.Math. Sci. Ser. A 4, 595–609 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  109. C. Hongler, Conformal Invariance of Ising Model Correlations, Ph.D. Thesis (University of Geneva, 2010). Available at http://archive-ouverte.unige.ch/unige:18163/ATTACHMENT01.

    MATH  Google Scholar 

  110. C. Hongler and S. Smirnov, “The energy density in the planar Ising model,” Acta Math. 211 (2), 191–225 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  111. I. Jack and H. Osborn, “Constraints on RG flow for four dimensional quantum field theories,” Nucl. Phys. B 883, 425–500 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  112. A. Jaffe, “Stochastic quantization, reflection positivity, and quantum fields,” J. Stat. Phys. 161 (1), 1–15 (2015).

    Article  MATH  MathSciNet  Google Scholar 

  113. J. Kaplan, Lectures on AdS/CFT From The Bottom Up. Notes for Fall 2013 and 2015 course at Johns Hopkins University. Available at http://www.pha.jhu.edu/~jaredk/AdSCFTCourseNotesPublic.pdf.

  114. T. Kennedy, “Conformal invariance of the 3D self-avoiding walk,” Phys. Rev. Lett. 111 (16–18), 165703 (2013).

    Article  Google Scholar 

  115. F. Kos, D. Poland and D. Simmons-Duffin, “Bootstrapping mixed correlators in the 3D Ising model,” J. High Energy Phys. 11, 109, 36 pp. (2014).

    Article  MATH  Google Scholar 

  116. A. Kupiainen, Introduction to the Renormalization Group. April 4, 2014 version of lecture notes available at http://www.math.lmu.de/~bohmmech/Teaching/bricmont2014/notes_kupiainen.pdf.

  117. A. Kupiainen, “Renormalization group and stochastic PDEs,” Ann.Henri Poincaré 17 (3), 497–535 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  118. E. Leichtnam, “Scaling group flow and Lefschetz trace formula for laminated spaces with p-adic transversal,” Bull. Sci. Math. 131 (7), 638–669 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  119. E. Yu. Lerner, “The hierarchical Dyson model and p-adic conformal invariance,” Theor. Math. Phys. 97 (2), 1259–1266 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  120. È. Yu. Lerner and M. D. Missarov, “p-Adic conformal invariance and the Bruhat-Tits tree,” Lett. Math. Phys. 22 (2), 123–129 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  121. G. Letac, “Seul le groupe des similitudes-inversions prśerve le type de la loi de Cauchy-conforme de Rn pour n > 1,” J. Funct. Anal. 68 (1), 43–54 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  122. P. Lévy, “Le mouvement brownien plan,” Amer. J.Math. 62, 487–550 (1940).

    Article  MATH  MathSciNet  Google Scholar 

  123. A. Lodhia, S. Sheffield, X. Sun and S. S. Watson, “Fractional Gaussian fields: a survey,” Probab. Surv. 13, 1–56 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  124. M. Lohmann, G. Slade and B. Wallace, “Critical two-point function for long-range O(n) models below the upper critical dimension,” J. Stat. Phys. 169 (6), 1132–1161 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  125. E. Lukacs, Characteristic Functions, Second edition, revised and enlarged (Hafner Publishing Co., New York, 1970).

    MATH  Google Scholar 

  126. T. J. Lyons, “Differential equations driven by rough signals,” Rev. Mat. Iberoamericana 14 (2), 215–310 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  127. J. Magnen and J. Unterberger, “From constructive field theory to fractional stochastic calculus. (I) An introduction: rough path theory and perturbative heuristics,” Ann. Henri Poincaré 12 (6), 1199–1226 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  128. J. Magnen and J. Unterberger, “From constructive field theory to fractional stochastic calculus. (II) Constructive proof of convergence for the Lévy area of fractional Brownian motion with Hurst index α ∈ (1/8, 1/4),” Ann. Henri Poincaré 13 (2), 209–270 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  129. P. Major, Multiple Wiener-ItôIntegrals. With Applications to Limit Theorems, Lect. Notes in Math. 849 (Springer, Cham, 2014).

  130. Yu. I. Manin, “p-Adic automorphic functions,” J. SovietMath. 5 (3), 279–333 (1976).

    MATH  Google Scholar 

  131. Yu. I. Manin, “Three-dimensional hyperbolic geometry as ∞-adic Arakelov geometry,” Invent. Math. 104 (2), 223–243 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  132. Yu. Manin and V. Drinfeld, “Periods of p-adic Schottky groups,” J. Reine Angew.Math. 262/263, 239–247 (1973).

    MATH  MathSciNet  Google Scholar 

  133. Yu. I. Manin and M. Marcolli, “Holography principle and arithmetic of algebraic curves,” Adv. Theor. Math. Phys. 5 (3), 617–650 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  134. Y. Meyer, Wavelets, Vibrations and Scalings, CRMMonograph Series 9 (American Math. Soc., Providence, RI, 1998).

  135. O. A. McBryan and J. Rosen, “Existence of the critical point in ϕ 4 field theory,” Comm. Math. Phys. 51 (2), 97–105 (1976).

    Article  MathSciNet  Google Scholar 

  136. H. McKean and V. Moll, Elliptic Curves. Function Theory, Geometry, Arithmetic (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  137. M. D. Missarov, “Critical indices for models with long-range interaction,” Teor. Mat. Fiz. 46 (2), 232–241 (1981).

    Article  MathSciNet  Google Scholar 

  138. M. D. Missarov, “The spectrum of the differential of a renormalization group,” Teor. Mat. Fiz. 57 (3), 406–413 (1983).

    Article  MathSciNet  Google Scholar 

  139. P. K. Mitter, “Long range ferromagnets: renormalization group analysis,” Slides of 10/24/2013 talk at LPTHE, UniversitéPierre et Marie Curie, Paris. Available at http://www.coulomb.univ-montp2.fr/plugins/aigle/FichiersPublications/L2C:13-392/file~RG.talk.paris2013.pdf.

  140. J.-C. Mourrat and H. Weber, “Global well-posedness of the dynamic F4 model in the plane,” Ann. Probab. 45 (4), 2398–2476 (2017).

    Article  MATH  MathSciNet  Google Scholar 

  141. Y. Nakayama, “Scale invariance vs conformal invariance,” Phys. Rep. 569, 1–93 (2015).

    Article  MathSciNet  Google Scholar 

  142. K.-H. Neeb and G. Ólafsson, “Reflection positivity and conformal symmetry,” J. Funct. Anal. 266 (4), 2174–2224 (2014).

    Article  MATH  MathSciNet  Google Scholar 

  143. C. M. Newman, “Normal fluctuations and the FKG inequalities,” Comm. Math. Phys. 74 (2), 119–128 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  144. C. N. Newman, “A general central limit theorem for FKG systems,” Comm. Math. Phys. 91 (1), 75–80 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  145. P. J. Nyikos, “Metrizability and the Fréchet-Urysohn property in topological groups,” Proc. Amer. Math. Soc. 83 (4), 793–801 (1981).

    MATH  MathSciNet  Google Scholar 

  146. H. Osborn, “Weyl consistency conditions and a local renormalisation group equation for general renormalisable field theories,” Nucl. Phys. B 363 (2–3), 486–526 (1991).

    Article  MathSciNet  Google Scholar 

  147. M. S. Osborne, “On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact abelian groups,” J. Funct. Anal. 19, 40–49 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  148. J. Palis, Jr. and W. de Melo, Geometric Theory ofDynamical Systems. An introduction (Springer-Verlag, New York-Berlin, 1982).

    Book  Google Scholar 

  149. M. F. Paulos, S. Rychkov, B. C. van Rees and B. Zan, “Conformal invariance in the long-range Isingmodel,” Nucl. Phys. B 902, 246–291 (2016).

    Article  MATH  Google Scholar 

  150. M. Picco, “Critical behavior of the Ising model with long range interactions,” Preprint arXiv:1207.1018[cond-mat.stat-mech], (2012).

    Google Scholar 

  151. M. A. Rajabpour, “Conformal symmetry in non-local field theories,” J. High Energy Phys. 6, 076, 12 pp. (2011).

    Article  MATH  MathSciNet  Google Scholar 

  152. R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, “Bounding scalar operator dimensions in 4D CFT,” J. High Energy Phys. 12, 031 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  153. J. G. Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149 (Springer, New York, 2006).

  154. C. J. Read, “Quantum field theories in all dimensions,” Comm. Math. Phys. 177 (3), 631–671 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  155. K.-H. Rehren, “Comments on a recent solution to Wightman’s axioms,” Comm. Math. Phys. 178 (2), 453–465 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  156. D. Ruelle, StatisticalMechanics: Rigorous Results (W. A. Benjamin, Inc., New York-Amsterdam, 1969).

    MATH  Google Scholar 

  157. S. Rychkov, “Conformal bootstrap in three dimensions?,” Preprint arXiv:1111.2115[hep-th], (2011).

    Google Scholar 

  158. J. Sak, “Recursion relations and fixed points for ferromagnets with long-range interactions,” Phys. Rev. B 8 (1), 281–285 (1973).

    Article  Google Scholar 

  159. J. Sak, “Low-temperature renormalization group for ferromagnets with long-range interactions,” Phys. Rev. B 15 (9), 4344–4347 (1977).

    Article  Google Scholar 

  160. P. J. Sally Jr., “An introduction to p-adic fields, harmonic analysis and the representation theory of SL2,” Lett. Math. Phys. 46 (1), 1–47 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  161. L. Schwartz, “Théorie des distributions et transformation de Fourier,” Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23, 7–24 (1948).

    MATH  MathSciNet  Google Scholar 

  162. L. Schwartz, “Sur l’impossibilitéde la multiplication des distributions,” C. R. Acad. Sci. Paris 239 (15), 847–848 (1954).

    MATH  MathSciNet  Google Scholar 

  163. L. Schwartz, Théorie des distributions, Publications de l’Institut de Mathématique de l’Universitéde Strasbourg, No. IX-X, nouvelle édition, entie` rement corrigée, refondue et augmentée (Hermann, Paris, 1966).

    MATH  Google Scholar 

  164. S. B. Shlosman, “The method of reflection positivity in the mathematical theory of first-order phase transitions,” Russian Math. Surv. 41 (3), 83–134 (1986).

    Article  MathSciNet  Google Scholar 

  165. K. F. Siburg and P. A. Stoimenov, “A measure of mutual complete dependence,” Metrika 71 (2), 239–251 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  166. D. Simmons-Duffin, “A semidefinite program solver for the conformal bootstrap,” J. High Energy Phys. 174, 31 pp. (2015).

    MathSciNet  Google Scholar 

  167. B. Simon, “Distributions and their Hermite expansions,” J.Math. Phys. 12, 140–148 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  168. B. Simon, Functional Integration and Quantum Physics, Pure and Applied Mathematics 86 (Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979).

  169. G. Slade, “Critical exponents for long-range O(n) models below the upper critical dimension,” Comm. Math. Phys. 358 (1), 343–436 (2018).

    Article  MATH  MathSciNet  Google Scholar 

  170. G. Slade and A. Tomberg, “Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component |φ|4 model,” Comm. Math. Phys. 342 (2), 675–737 (2016).

    Article  MATH  MathSciNet  Google Scholar 

  171. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That, Corrected third printing of the 1978 edition, Princeton Landmarks in Physics (Princeton Univ. Press, Princeton, NJ, 2000).

    MATH  Google Scholar 

  172. T. Tao, “Dyadic models,” Blog post of 07/27/2007. Available at https://terrytao.wordpress.com/2007/07/27/dyadic-models/.

  173. J. Unterberger, “Mode d’emploi de la théorie constructive des champs bosoniques, avec une application aux chemins rugueux, [How to use constructive bosonic field theory, with an application to rough paths],” Confluentes Math. 4 (2012), no. 1, 1240004, 34 pp.

    Article  Google Scholar 

  174. J. Unterberger, “A renormalized rough path over fractional Brownian motion,” Comm. Math. Phys. 320 (3), 603–636 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  175. M. Valdivia, “Representaciones de los espacios D(Ω) y D'(Ω),” Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 72 (3), 385–414 (1978).

    MathSciNet  Google Scholar 

  176. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, Series on Soviet and East EuropeanMathematics 1 (World Scientific Publ. Co., Inc., River Edge, NJ, 1994).

    Book  MATH  Google Scholar 

  177. D. Vogt, “Sequence space representations of spaces of test functions and distributions,” Functional Analysis, Holomorphy, and Approximation Theory (Rio de Janeiro, 1979), Ed. G. I. Zapata, Lecture Notes in Pure and Appl. Math. 83, pp. 405–443 (Dekker, New York, 1983).

    Google Scholar 

  178. M. Waldschmidt, “Sur les méthodes de Schneider, Gel’fond et Baker,” Séminaire de Théorie des Nombres de Bordeaux 16, 1–14 (1987-1988). Available at https://eudml.org/doc/182277.

    MATH  MathSciNet  Google Scholar 

  179. J. B. Walsh, “An introduction to stochastic partial differential equations,” École d’étéde Probabilités de Saint-Flour, XIV-1984, Ed. P. L. Hennequin, Lect. Notes in Math. 1180, pp. 265–439 (Springer, Berlin, 1986).

    Article  MathSciNet  Google Scholar 

  180. A. Weil, translation by M. H. Krieger, “A 1940 Letter of AndréWeil on analogy inMathematics,” Excerpted from Doing Mathematics (World Scientific Publishing Co., Inc., River Edge, NJ, 2003). Notices Amer. Math. Soc. 52 (3), 334–341 (2005).

    Google Scholar 

  181. J. B. Wilker, “Inversive geometry,” The Geometric Vein, Eds. C. Davis, B. Grünbaum and F. A. Sherk, pp. 379–442 (Springer, New York-Berlin, 1981).

    Chapter  Google Scholar 

  182. K. G. Wilson and J. Kogut, “The renormalization group and the ϵ expansion,” Phys. Rep. 12 (2), 75–199 (1974).

    Article  Google Scholar 

  183. E. Witten, “Anti de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (2), 253–291 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  184. A. V. Zabrodin, “Non-Archimedean strings and Bruhat-Tits trees,” Comm. Math. Phys. 123 (3), 463–483 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  185. A. B. Zamolodchikov, “Conformal symmetry and multicritical points in two-dimensional quantum field theory,” Soviet J. Nucl. Phys. 44 (3), 529–533 (1987); translated from Yadernaya Fiz. 44 (3), 821–827 (1986) [in Russian].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmalek Abdesselam.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdesselam, A. Towards Three-Dimensional Conformal Probability. P-Adic Num Ultrametr Anal Appl 10, 233–252 (2018). https://doi.org/10.1134/S2070046618040015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046618040015

Key words

Navigation