Skip to main content
Log in

Local zeta functions, pseudodifferential operators and Sobolev-type spaces over non-Archimedean local fields

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

In this articlewe introduce a new type of local zeta functions and study some connections with pseudodifferential operators in the framework of non-Archimedean fields. The new local zeta functions are defined by integrating complex powers of norms of polynomials multiplied by infinitely pseudo-differentiable functions. In characteristic zero, the new local zeta functions admit meromorphic continuations to the whole complex plane, but they are not rational functions. The real parts of the possible poles have a description similar to the poles of Archimedean zeta functions. But they can be irrational real numbers while in the classical case are rational numbers. We also study, in arbitrary characteristic, certain connections between local zeta functions and the existence of fundamental solutions for pseudodifferential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models (Cambridge University Press, 2010).

    Book  MATH  Google Scholar 

  2. V. I. Arnold, S. M. Gussein-Zade and A. N. Varchenko, Singularités des applications différentiables, Vol II. (Éditions Mir,Moscou, 1986).

    Google Scholar 

  3. M. F. Atiyah, “Resolution of singularities and division of distributions,” Comm. Pure Appl. Math. 23, 145–150 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Belkale and P. Brosnan, “Periods and Igusa local zeta functions,” Int. Math. Res. Not. 49, 2655–2670 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Berthelot, “Introduction à la théorie arithmétique des D-modules,” Cohomologies p-adiques et applications arithmétiques, II, Astérisque 279, 1–80 (2002).

    MathSciNet  MATH  Google Scholar 

  6. I. N. Bernstein, “Modules over the ring of differential operators; the study of fundamental solutions of equations with constant coefficients,” Func. Anal. Appl. 5 (2), 1–16 (1972).

    Google Scholar 

  7. C. G. Bollini, J. J. Giambiagi and A. González Domínguez, “Analytic regularization and the divergencies of quantum field theories,” Il Nuovo Cim. XXXI (3), 550–561 (1964).

    Article  Google Scholar 

  8. M. Bocardo-Gaspar, H. García-Compeán and W. A. Zúñiga-Galindo, “Regularization of p-adic string amplitudes, and multivariate local zeta functions,” arXiv:1611.03807, (2016).

    Google Scholar 

  9. J. Cassaigne and V. Maillot, “Hauteur des hypersurfaces et fonctions zêta d’Igusa,” J. Number Th. 83 (2), 226–255 (2000).

    Article  MATH  Google Scholar 

  10. J. Denef, “Report on Igusa’s Local zeta function,” Séminaire Bourbaki 43 (1990-1991), exp. 741; Astérisque 201-202-203, 359–386 (1991).

    MathSciNet  MATH  Google Scholar 

  11. J. Denef and F. Loeser, “Motivic Igusa zeta functions,” J. Alg. Geom. 7, 505–537 (1998).

    MathSciNet  MATH  Google Scholar 

  12. I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol. 1. Properties and Operations (AMS Chelsea Publishing, 2010).

    MATH  Google Scholar 

  13. I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol. 2. Spaces of Fundamental and Generalized Functions (AMS Chelsea Publishing, 2010).

    MATH  Google Scholar 

  14. I. M. Gel’fand and N. Ya. Vilenkin, Generalized Functions. Vol. 4. Applications of Harmonic Analysis (AMS Chelsea Publishing, 2010).

    MATH  Google Scholar 

  15. T. Hida, H.-H. Kuo, J. Potthoff and L. Streit, White Noise. An Infinite-Dimensional Calculus (Kluwer Academic Publishers Group, 1993).

    MATH  Google Scholar 

  16. J.-I. Igusa, An Introduction to the Theory of Local Zeta Functions, AMS/IP Studies in Advanced Mathematics, (2000).

    MATH  Google Scholar 

  17. J.-I. Igusa, “A stationary phase formula for p-adic integrals and its applications,” Algebraic Geometry and its Applications, pp. 175–194 (Springer-Verlag, 1994).

    Chapter  Google Scholar 

  18. J.-I. Igusa, Forms of Higher Degree (The Narosa Publishing House, 1978).

    MATH  Google Scholar 

  19. H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero,” Ann.Math. 79, 109–326 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. N. Kochubei, Pseudo-Differential Equations and Stochastics over Non-Archimedean Fields (Marcel Dekker, 2001).

    Book  MATH  Google Scholar 

  21. F. Loeser, “Fonctions zêta locales d’Igusa à plusiers variables, intégration dans les fibres, et discriminants,” Ann. Sc. Ec.Norm. Sup. 22 (3), 435–471 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Mustaţâ, “Bernstein-Sato polynomials in positive characteristic,” J. Algebra 321 (1), 128–151 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics 1577 (Springer-Verlag, 1994).

  24. B. Rubin, “Riesz potentials and integral geometry in the space of rectangular matrices,” Adv. Math. 205 (2), 549–598 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. R. Speer, Generalized Feynman Amplitudes, Annals ofMathematics Studies 62 (Princeton University Press, 1969).

  26. M. H. Taibleson, Fourier Analysis on Local Fields (Princeton University Press, 1975).

    MATH  Google Scholar 

  27. W. Veys and W. A. Zúniga-Galindo, “Zeta functions for analytic mappings, log-principalization of ideals and Newton polyhedra,” Trans. Amer.Math. Soc. 360, 2205–2227 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Veys and W. A. Zúniga-Galindo, “Zeta functions and oscillatory integrals for meromorphic functions,” Adv. Math. 311, 295–337 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, 1994).

    Book  MATH  Google Scholar 

  30. A. Weil, Basic Number Theory (Springer-Verlag, 1967).

    Book  MATH  Google Scholar 

  31. K. Yosida, Functional analysis (Springer-Verlag, 1965).

    Book  MATH  Google Scholar 

  32. W. A. Zúñiga-Galindo, “Non-Archimedean white noise, pseudodifferential stochastic equations, andmassive Euclidean fields,” J. Fourier Anal. Appl. 23 (2), 288–323 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  33. W. A. Zúñiga-Galindo, Pseudodifferential Equations over Non-Archimedean Spaces, Lectures Notes in Mathematics 2174 (Springer, 2016).

  34. W. A. Zuniga-Galindo, “Local zeta functions and Newton polyhedra,” Nagoya Math. J. 172, 31–58 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  35. W. A. Zuniga-Galindo, “Fundamental solutions of pseudo-differential operators over p-adic fields,” Rend. Sem. Mat. Univ. Padova 109, 241–245 (2003).

    MathSciNet  MATH  Google Scholar 

  36. W. A. Zúñiga-Galindo, “Igusa’s local zeta functions of semiquasihomogeneous polynomials,” Trans. Amer. Math. Soc. 353 (8), 3193–3207 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Zúñiga-Galindo.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zúñiga-Galindo, W.A. Local zeta functions, pseudodifferential operators and Sobolev-type spaces over non-Archimedean local fields. P-Adic Num Ultrametr Anal Appl 9, 314–335 (2017). https://doi.org/10.1134/S2070046617040069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046617040069

Key words

Navigation