Abstract
p-Adic mathematical physics is a branch of modern mathematical physics based on the application of p-adic mathematical methods in modeling physical and related phenomena. It emerged in 1987 as a result of efforts to find a non-Archimedean approach to the spacetime and string dynamics at the Planck scale, but then was extended to many other areas including biology. This paper contains a brief review of main achievements in some selected topics of p-adic mathematical physics and its applications, especially in the last decade. Attention is mainly paid to developments with promising future prospects.
Similar content being viewed by others
References
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, Theory of p-Adic Distributions: Linear and Nonlinear Models, London Mathematical Society Lecture Note Series 370 (Cambridge Univ. Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo, 2010).
S. Albeverio and S. V. Kozyrev, “Pseudodifferential p-adic vector fields and pseudodifferentiation of a composite p-adic function,” p-Adic Numbers Ultrametric Anal. Appl. 2 (1), 21–34 (2010) [arXiv:1105.1506].
S. Albeverio and W. Karwowski, “A random walk on p-adic numbers–generator and its spectrum,” Stoch. Proc. Theory Appl. 53, 1–22 (1994).
S. Albeverio and Ya. Belopolskaya, “Stochastic processes in Qp associated with systems of nonlinear PDEs,” p-Adic Numbers Ultrametric Anal. Appl. 1 (2), 105–117 (2009).
S. Albeverio and S. V. Kozyrev, “Frames of p-adic wavelets and orbits of the affine group,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 18–33 (2009) [arxiv:0801.4713].
S. Albeverio, S. Evdokimov and M. Skopina, “p-Adic multiresolution analysis and wavelet frames,” J. Fourier Anal. Appl. 16 (5), 693–714 (2010) [arXiv:0802.1079v1].
S. Albeverio, S. Evdokimov and M. Skopina, “p-Adic multiresolution analyses,” (2008) [arXiv:0810.1147].
S. Albeverio, S. Evdokimov and M. Skopina, “p-Adic non-orthogonal wavelet bases,” Proc. Steklov Inst. Math. 265, 1–12 (2009).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-adic wavelets, Tauberian theorems,” J. Fourier Anal. Appl. 12 (4), 393–425 (2006).
S. Albeverio and S. V. Kozyrev, “Multidimensional basis of p-adic wavelets and representation theory,” p-Adic Numbers Ultrametric Anal. Appl. 1 (3), 181–189 (2009) [arXiv:0903.0461].
S. Albeverio and S. V. Kozyrev, “Multidimensional p-adic wavelets for the deformed metric,” p-Adic Numbers Ultrametric Anal. Appl. 2 (4), 265–277 (2010) [arXiv:1105.1524].
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “Pseudo-differential operators in the p-adic Lizorkin space,” in p-AdicMathematical Physics, AIP Conference Proceedings 826, 195–205 (2006).
S. Albeverio and S. V. Kozyrev, “Multidimensional ultrametric pseudodifferential equations,” Proc. Steklov Math. Inst. 265, 19–35 (2009) [arXiv:0708.2074].
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “p-Adic semilinear evolutionary pseudodifferential equations in Lizorkin spaces,” Dokl. Akad. Nauk 415 (3), 295–299 (2007) [Dokl. Math. 76 (1), 539–543 (2007)].
S. Albeverio, S. Kuzhel, and S. Torba, “p-Adic Schrödinger-type operator with point interactions,” J. Math. Anal. Appl. 338, 1267–1281 (2008).
S. Albeverio and S. V. Kozyrev, “Clustering by hypergraphs and dimensionality of cluster systems,” p-Adic Numbers Ultrametric Anal. Appl. 4 (3), 167–178 (2012) [arXiv:1204.5952v1].
S. Albeverio, R. Cianci and A. Yu. Khrennikov, “p-Adic valued quantization,” p-Adic Number Ultrametric Anal. Appl. 1 (2), 91–104 (2009).
V. Anashin and A. Khrennikov, Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics (de Gruyter, 2009).
A. Ansari, J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder and R. D. Young, “Protein states and proteinquakes,” Proc. Natl. Acad. Sci. USA 82, 5000–5004 (1985).
I. Ya. Arefeva, B. Dragovich and I. V. Volovich, “On the p-adic summability of the anharmonic oscillator,” Phys. Lett. B 200, 512–514 (1988).
I. Ya. Aref’eva, B. Dragovich, P. H. Frampton and I. V. Volovich, “The wave function of the Universe and p-adic gravity,” Int. J. Mod. Phys. A 6, 4341–4358 (1991).
I. Ya. Aref’eva, “Nonlocal string tachyon as a model for cosmological dark energy,” AIP Conf. Proc. 826, 301–311 (2006) [astro-ph/0410443].
I. Ya. Aref’eva, A. S. Koshelev and S. Yu. Vernov, “Crossing of the w = −1 barrier by D3-brane dark energy model,” Phys. Rev. D 72, 064017 (2005) [astro-ph/0507067].
I. Ya. Aref’eva, L. V. Joukovskaya and S. Yu. Vernov, “Bouncing and accelerating solutions in nonlocal stringy models,” (2007) [hep-th/0701189].
I. Ya. Aref’evaand I. V. Volovich, “Quantization of the Riemann zeta-function and cosmology,” Int. J. Geom. Meth. Mod. Phys. 4, 881–895 (2007).
I. Ya. Arefeva and I. V. Volovich, “Cosmological daemon,” JHEP, 2011 8 (2011) 102, 32 pp. [arXiv:1103.0273].
I. Ya. Arefeva and I. V. Volovich, “The master field for QCD and q-deformed quantum field theory,” Nucl. Phys. B 462, 600–612 (1996) [hep-th/9510210].
V. A. Avetisov, A. H. Bikulov and S. V. Kozyrev, “Application of p-adic analysis to models of spontaneous breaking of replica symmetry,” J. Phys. A: Math. Gen. 32 (50), 8785–8791 (1999) [arXiv:condmat/9904360].
V. Avetisov, P. L. Krapivsky and S. Nechaev, “Native ultrametricity of sparse random ensembles,” J. Phys. A: Math. Theor. 49 (3), (2016).
V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math. Gen. 35 (2), 177–189 (2002) [arXiv:condmat/0106506].
V. A. Avetisov, A. Kh. Bikulov and V. A. Osipov, “p-Adic models for ultrametric diffusion in conformational dynamics of macromolecules,” Proc. Steklov Inst. Math. 245, 48–57 (2004).
V. A. Avetisov and A. Kh. Bikulov, “Protein ultrametricity and spectral diffusion in deeply frozen proteins,” Biophys. Rev. Lett. 3 (3), 387 (2008) [arXiv:0804.4551].
V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “First passage time distribution and number of returns for ultrametric random walk,” J. Phys. A:Math. Theor. 42, 085003–085020 (2009) [arXiv:0808.3066].
V. A. Avetisov and Yu. N. Zhuravlev, “An evolutionary interpretation of the p-adic ultrametric diffusion equation,” Dokl. Math. 75 (3), 435–455 (2007) [arXiv:0808.3066].
V. A. Avetisov and A. Kh. Bikulov, “Ultrametricity of fluctuation dynamic mobility of protein molecules,” Proc. Steklov Inst. Math. 265 (1), 75–81 (2009).
V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “Ultrametric random walk and dynamics of protein molecules,” Proc. Steklov Inst. Math. 285, 3–25 (2014).
V. A. Avetisov, A. Kh. Bikulov and V. A. Osipov, “p-Adic description of characteristic relaxation in complex systems,” J. Phys. A:Math. Gen. 36 (15), 4239–4246 (2003).
V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “Mathematical modeling of molecular nanomachines,” Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki 1 (22), 9–15 (2011) [in Russian].
V. A. Avetisov, V. A. Ivanov, D. A. Meshkov and S. K. Nechaev, “Fractal globule as a molecular machine, JETP Lett. 98 (4), 242–246 (2013).
N. Barnaby, T. Biswas and J. M. Cline, “p-Adic inflation,” (2006) [hep-th/0612230].
J. J. Benedetto and R. L. Benedetto, “A wavelet theory for local fields and related groups,” J. Geom. Anal. 3, 423–456 (2004).
R. L. Benedetto, “Examples of wavelets for local fields,” in Wavelets, Frames, and Operator Theory (College Park, MD, 2003) pp. 27–47 (Am. Math. Soc., Providence, RI, 2004).
A. Kh. Bikulov and I. V. Volovich, “p-Adic Brownian motion,” Izv. Math. 61 (3), 537–552 (1997).
A. Kh. Bikulov, “Stochastic p-adic equations of mathematical physics,” Theor. Math. Phys. 119 (2), 594–604 (1999).
A. Kh. Bikulov, A. P. Zubarev and L. V. Kaidalova, “Hierarchical dynamical model of financial market near the crash point and p-adic analysis,” Vest. Samarsk. Gosud. Tekhn. Univer. Seriya Fiziko-Matem. Nauki 42, 135–141 (2006) [in Russian].
K. Binder and A. P. Young, “Spin glasses: Experimental facts, theoretical concepts, and open questions,” Rev. Mod. Phys. 58, 801–976 (1986).
O. M. Becker and M. Karplus, “The topology of multidimensional protein energy surfaces: Theory and application to peptide structure and kinetics,” J. Chem. Phys. 106, 1495–1517 (1997).
A. Blumen, J. Klafter and G. Zumofen, “Random walks on ultrametric spaces: low temperature patterns,” J. Phys. A:Math. Gen. 19, L861 (1986).
P. E. Bradley, “On p-adic classification,” p-Adic Numbers Ultrametric Anal. Appl. 1 (4), 271–283 (2009).
P. E. Bradley, “A p-adic RANSAC algorithm for stereo vision using Hensel lifting,” p-Adic Numbers Ultrametric Anal. Appl. 2 (1), 55–67 (2010).
P. E. Bradley, “From image processing to topological modelling with p-adic numbers,” p-Adic Numbers Ultrametric Anal. Appl. 2 (4), 293–304 (2010).
P. E. Bradley, “Ultrametricity indices for the Euclidean and Boolean hypercubes,” p-Adic Numbers Ultrametric Anal. Appl. 8 (4), 298–311 (2016).
L. Brekke and P. G. O. Freund, “p-Adic numbers in physics,” Phys. Rep. 233 (1), 1–66 (1993).
G. Calcagni, “Cosmological tachyon from cubic string field theory,” JHEP 05 012 (2006) [hep-th/0512259].
L. F. Chacon-Cortes and W. A. Zuniga-Galindo, “Nonlocal operators, parabolic-type equations, and ultrametric random walks,” J. Math. Phys. 54 (11), 113503 (2013).
D. M. Carlucci and C. De Dominicis, “On the replica Fourier transform,” Compt. Rendus Ac. Sci. Ser. IIB Mech. Phys. Chem. Astr. 325, 527 (1997) [arXiv:cond-mat/9709200].
O. Casas-Sanchez and W. A. Zuniga-Galindo, “Riesz kernels and pseudodifferential operators attached to quadratic forms over p-adic fields,” p-Adic Numbers Ultrametric Anal. Appl. 5 (3), 177–193 (2013).
I. Daubechies, Ten Lectures on Wavelets, CBMS-NSR Series in Appl. Math. (SIAM, 1992).
C. De Dominicis, D. M. Carlucci and T. Temesvari, “Replica Fourier tansforms on ultrametric trees, and block-diagonalizing multi-replica matrices,” J. Physique I (France) 7, 105–115 (1997) [arXiv:condmat/9703132].
I. Dimitrijevic, B. Dragovich, J. Stankovic, A. S. Koshelev and Z. Rakic, “On nonlocal modified gravity and its cosmological solutions,” Springer Proc. Math. & Stat. 191, 35–51 (2016) [arXiv:1701.02090[hep-th]].
I. Dimitrijevic, B. Dragovich, J. Grujic and Z. Rakic, “Some Cosmological Solutions of a Nonlocal Modified Gravity,” Filomat 29 (3), 619–628 (2015) [arXiv:1508.05583[hep-th]].
I. Dimitrijevic, B. Dragovich, J. Grujic and Z. Rakic, “New cosmological solutions in nonlocal modified gravity,” Romanian J. Phys. 58 (5-6), 550–559 (2013) [arXiv:1302.2794[gr-qc]].
I. Dimitrijevic, B. Dragovich, J. Grujic, A. S. Koshelev and Z. Rakic, “Cosmology of modified gravity with a non-local f(R),” (2015) [arXiv:1509.04254[hep-th]].
D. D. Dimitrijevic, G. S. Djordjevic and Lj. Nesic, “Quantum cosmology and tachyons,” Fortsch. Physik (Progr. Phys.) 56 (4-5), 412–417 (2008).
G. S. Djordjević, B. Dragovich, Lj. D. Nešićand I. V. Volovich, “p-Adic and adelicminisuperspace quantum cosmology,” Int. J. Mod. Phys. A 17 (10), 1413–1433 (2002) [arXiv:gr-qc/0105050].
G. S. Djordjevic, L. Nesic and D. Radovancevic, Signature Change in p-Adic and Noncommutative FRW Cosmology, International Journal ofModern Physics A, 29, 1450155 (2014)
D. D. Dimitrijevic, G. S. Djordjevic and M. Milosevic, “Classicalization and quantization of tachyon-like matter in (non)Archimedean spaces,” Roman. Rep. Phys. 68 (1), 5–18 (2016).
G. S. Djordjevic, Lj. Nesic and D. Radovancevic, “Two-oscillator KantowskiЦSachs model of the Schwarzschild black hole interior,” Gen. Relativ. Gravit. 48, 106 (2016).
B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adic mathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 1–17 (2009) [arXiv:0904.4205].
B. Dragovich, “On measurements, numbers and p-adicmathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 4 (2), 102–108 (2012).
B. Dragovich, “p-Adic perturbation series and adelic summability,” Phys. Lett. B 256 (3, 4), 392–39 (1991).
B. G. Dragovich, “Power series everywhere convergent on R and Q p,” J. Math. Phys. 34 (3), 1143–1148 (1992) [arXiv:math-ph/0402037].
B. G. Dragovich, “On p-adic aspects of some perturbation series,” Theor. Math. Phys. 93 (2), 1225–1231 (1993).
B. G. Dragovich, “Rational summation of p-adic series,” Theor. Math. Phys. 100 (3), 1055–1064 (1994).
B. Dragovich, “On p-adic series inmathematical physics,” Proc. Steklov Inst. Math. 203, 255–270 (1994).
B. Dragovich, “On p-adic series with rational sums,” Scientific Review 19–20, 97–104 (1996).
B. Dragovich, “On some p-adic series with factorials,” in p-Adic Functional Analysis, Lect. Notes Pure Appl. Math. 192, 95–105 (Marcel Dekker, 1997) [arXiv:math-ph/0402050].
B. Dragovich, “On p-adic power series,” in p-Adic Functional Analysis, Lect. Notes Pure Appl. Math. 207, 65–75 (Marcel Dekker, 1999) [arXiv:math-ph/0402051].
B. Dragovich, “On some finite sums with factorials,” Facta Universitatis: Ser. Math. Inform. 14, 1–10 (1999) [arXiv:math/0404487 [math.NT]].
M. de Gosson, B. Dragovich and A. Khrennikov, “Some p-adic differential equations,” in p-Adic Functional Analysis, Lect. Notes Pure Appl. Math. 222, 91–112 (Marcel Dekker, 2001) [arXiv:math-ph/0010023].
B. Dragovich and N. Z. Misic, “p-Adic invariant summation of some p-adic functional series,” p-Adic Numbers Ultrametric Anal. Appl. 6 (4), 275–283 (2014) [arXiv:1411.4195v1 [math. NT]].
B. Dragovich, A. Yu. Khrennikov and N. Ž. Mišić, “Summation of p-adic functional series in integer points,” Filomat 31 (5), 1339–1347 (2017), [arXiv:1508.05079 [math.NT]].
B. Dragovich, “On summation of p-adic series,” accepted for publication in Contem. Math., AMS, [arXiv:1702.02569 [math. NT]] (2017).
N. J. A. Sloane, The on-line encyclopedia of integer sequences, https://oeis.org/.
B. Dragovich, “Zeta strings,” [arXiv:hep-th/0703008] (2007).
B. Dragovich, “Zeta-nonlocal scalar fields,” Theor. Math. Phys. 157 (3), 1669–1675 (2008) [arXiv:0804.4114[hep-th]].
B. Dragovich, “Some Lagrangians with zeta function nonlocality,” [arXiv:0805.0403 [hep-th]] (2008).
B. Dragovich, “Lagrangians with Riemann zeta function,” Rom. J. Phys. 53 (9-10), 1105–1110 (2008) [arXiv:0809.1601[hep-th]].
B. Dragovich, “Towards effective Lagrangians for adelic strings,” Fortschr. Phys. 57 (5-7), 546–551 (2009) [arXiv:0902.0295[hep-th]].
B. Dragovich, “The p-adic sector of the adelic string,” Theor. Math. Phys. 163 (3), 768–773 (2010) [arXiv:0911.3625[hep-th]].
B. Dragovich, “Nonlocal dynamics of p-adic strings,” Theor. Math. Phys. 164 (3), 1151–1155 (2010) [arXiv:1011.0912[hep-th]].
B. Dragovich, “Adeles in mathematical physics,” (2007) [arXiv:0707.3876[math-ph]].
B. Dragovich, “Adelic wave function of the Universe,” in Proc. Third A. Friedmann Int. Seminar on Grav. and Cosmology, Eds. Yu. N. Gnedin, A. A. Grib and V. M. Mostepanenko, pp. 311–321 (Friedmann Lab. Publishing, St. Petersburg, 1995).
B. Dragovich and Lj. Nešić, “p-Adic and adelic generalization of quantum cosmology,” Gravitat. Cosmol. 5, 222–228 (1999) [arXiv:gr-qc/0005103].
B. Dragovich, “p-Adic and adelic cosmology: p-adic origin of dark energy and dark matter,” AIP Conf. Proc. 826, 25–42 (2006) [arXiv:hep-th/0602044].
B. Dragovich, “Towards p-adic matter in the universe,” Springer Proc. Math & Stat. 36, 13–24 (2013) [arXiv:1205.4409[hep-th]].
B. Dragovich, “Adelic model of harmonic oscillator,” Theor. Math. Phys. 101, 1404–1415 (1994) [arXiv:hep-th/0402193].
B. Dragovich, “Adelic harmonic oscillator,” Int. J. Mod. Phys. A 10, 2349–2365 (1995) [arXiv:hepth/0404160].
B. Dragovich, “p-Adic and adelic quantum mechanics,” Proc. Steklov Inst. Math. 245, 72–85 (2004) [arXiv:hep-th/0312046].
G. Djordjevićand B. Dragovich, “p-Adic path integrals for quadratic actions,” Mod. Phys. Lett. A 12 (20), 1455–1463 (1997) [arXiv:math-ph/0005026].
G. Djordjević, B. Dragovich and Lj. Nešić, “Adelic path intergals for quadratic Lagrangians,” Infin. Dimens. Anal. Quan. Prob. Relat. Topics 6, 179–195 (2003) [arXiv:hep-th/0105030].
B. Dragovich and Z. Rakic, “Path integrals for quadratic Lagrangians on p-adic and adelic spaces,” p-Adic Numbers Ultrametric Anal Appl. 2 (4), 322–340 (2010) [arXiv:1011.6589[math-ph]].
B. Dragovich, A. Khrennikov and D. Mihajlovic, “Linear fractional p-adic and adelic dynamical systems,” Rep. Math. Phys. 60, 55–68 (2007) [arXiv:math-ph/0612058].
B. Dragovich and A. Yu. Dragovich, “A p-adic model of DNA sequence and genetic code,” (2006) [arXiv:qbio.GN/0607018].
B. Dragovich and A. Yu. Dragovich, “A p-adic model of DNA sequence and genetic code,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 34–41 (2009) [arXiv:q-bio.GN/0607018].
B. Dragovich and A. Yu. Dragovich, “p-Adic modelling of the genome and the genetic code,” Comp. J. 53, 432–442 (2010) [arXiv:0707.3043, doi:10. 1093/comjnl/bxm083].
B. Dragovich, “Genetic code and number theory,” FactaUniversitatis: Phys. Chem. Techn. 14 (3), 225–241 (2016) [arXiv:0911.4014[q-bio. OT]].
B. Dragovich, “p-Adic structure of the genetic code,” (2012) [arXiv:1202.2353[q-bio. OT]].
B. Dragovich, “On ultrametricity in bioinformation systems,” in Conference Proceedings Theoretical Approaches to Bioinformation Systems (ABIS. 2013 Conference, Belgrade, 17-22. 09. 2013; (published by Institute of Physics, Belgrade, 2014).
B. Dragovich, A. Yu. Khrennikov and N. Ž. Mišić, “Ultrametrics in the genetic code and the genome,” to be published in Appl. Math. Comput. (2017).
B. Dragovich and D. Joksimović, “On possible uses of p-adic analysis in econometrics,” Megatrend Revija 4 (2), 5–16 (2007).
S. N. Evans, “Local field Brownian motion,” J. Theor. Probab. 6, 817–850 (1993).
Yu. A. Farkov, “Orthogonal wavelets with compact support on locally compact Abelian groups,” Izv. Ross. Akad. Nauk, Ser. Mat. 69 (3), 193–220 (2005) [Izv. Math. 69, 623–650 (2005)].
S. Fischenko and E. I. Zelenov, “p–Adic models of turbulence,” in p-Adic Mathematical Physics, AIP Conference Proceedings 286, 174–191 (Melville, New York, 2006).
K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge Univ. Press, 1993).
H. Frauenfelder, S. G. Sligar and P. G. Wolynes, “The energy landscapes and motions of proteins,” Science 254 5038, 1598–1603 (1991).
H. Frauenfelder, B. H. McMahon and P. W. Fenimore, “Myoglobin: the hydrogen atom of biology and paradigm of complexity, PNAS 100 (15), 8615–8617 (2003).
Y. V. Fyodorov, A. Ossipov and A. Rodriguez, “The Anderson localization transition and eigenfunction multifractality in an ensemble of ultrametric random matrices,” J. Stat. Mech.: Theory Exp. 12, L12001 (2009).
N. Ganikhodjaev, F. Mukhamedov and C. H. Pah, “Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice,” Phys. Lett. A 373 (1), 33–38 (2008).
I. M. Gelfand, M. I. Graev and I. I. Pyatetskii-Shapiro, Representation Theory and Automorphic Functions (Saunders, Philadelphia, 1969).
C. Hara, R. Iijima, H. Kaneko and H. Matsumoto, “Orlicz norm and Sobolev-Orlicz capacity on ends of tree based on probabilistic Bessel kernels,” p-Adic Numbers Ultrametric Anal. Appl. 7 (1), 24–38 (2015).
S. Haran, “Analytic potential theory over p-adics,” Ann. Inst. Fourier 43, 905–944 (1993).
K. H. Hoffmann and P. Sibani, “Diffusion in hierarchies,” Phys. Rev. A 38, 4261–4270 (1988).
A. IlićStepić, Z. Ognjanović, N. Ikodinovićand A. Perović, “p-Adic probability logics,” p-Adic Numbers Ultrametric Anal. Appl. 8 (3), 177–203 (2016).
A. Imai, H. Kaneko and H. Matsumoto, “A Dirichlet space associated with consistent networks on the ring of p-adic integers,” p-Adic Numbers Ultrametric Anal. Appl. 3 (4), 309–325 (2011).
R. S. Ismagilov, “On the spectrum of the self-adjoint operator in L2(K) where K is a local field: an analog of the Feynman-Kac formula,” Theor. Math. Phys. 89, 1024–1028 (1991).
W. C. Lang, “Wavelet analysis on the Cantor dyadic group,” Houston J. Math. 24, 533–544 (1998).
W. C. Lang, “Orthogonal wavelets on the Cantor dyadic group,” SIAM J. Math. Anal. 27, 305–312 (1996).
M. L. Lapidus and Lu Hung, “Self-similar p-adic fractal strings and their complex dimensions,” p-Adic Numbers Ultrametric Anal. Appl. 1 (2), 167–180 (2009).
J. W. de Jong, Graphs, spectral triples and Dirac zeta functions p-Adic Numbers Ultrametric Anal. Appl. 1 (3) 286–296 (2009).
H. Kaneko and K. Yasuda, “Capacities associated with Dirichlet space on an infinite extension of a local field,” ForumMath. 17, 1011–1032 (2005).
K. Kamizono, “p-Adic Brownian motion over Qp,” Proc. Steklov Inst. Math. 265, 115–130 (2009).
H. Kaneko and A. N. Kochubei, “Weak solutions of stochastic differential equations over the field of p-adic numbers,” Tohoku Math. J. 59, 547–564 (2007).
H. Kaneko, “Fractal theoretic aspects of local field,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 51–57 (2009).
W. Karwowski and K. Yasuda, “Dirichlet forms for diffusion in R2 and jumps on fractals: The regularity problem,” p-Adic Numbers Ultrametric Anal. Appl. 2 (4), 341–359 (2010).
E. King and M. A. Skopina, “Quincunx multiresolution analysis for L 2(Q2 2),” p-Adic Numbers Ultrametric Anal. Appl. 2 (3), 222–231 (2010).
A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer, Dordrecht, 1994).
A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordrecht, 1997).
A. Yu. Khrennikov, Non-Archimedean Analysis and Its Applications (Fizmatlit, Moscow, 2003) [in Russian].
A. Yu. Khrennikov and S. V. Kozyrev, “Wavelets on ultrametric spaces,” Appl. Comput. Harm. Anal. 19, 61–76 (2005).
A. Yu. Khrennikov and S. V. Kozyrev, “Ultrametric random field,” Infin. Dimens. Anal. Quan. Prob. Related Topics 9 (2), 199–213 (2006) [arXiv:math/0603584].
A. Yu. Khrennikov, S. V. Kozyrev, K. Oleschko, A. G. Jaramillo and M. de Jesús Correa López, “Application of p-adic analysis to time series,” Infin. Dimens. Anal. Quant. Probab. Relat. Topics, 16 (4), 1350030, 15 pp. (2013) [arXiv:1312.3878].
A. Yu. Khrennikov and V. M. Shelkovich, “Non-Haar p-adic wavelets and their application to pseudodifferential operators and equations,” Appl. Comput. Harm. Anal. 28 (1), 1–23 (2010) [arXiv:0808.3338v1].
A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic refinable functions and MRA-based wavelets,” J. Approx. Theory 161, 226–238 (2009) [arXiv:0711.2820].
A. Yu. Khrennikov and V. M. Shelkovich, “Distributional asymptotics and p-adic Tauberian and Shannon- Kotelnikov theorems,” Asympt. Anal. 46 (2), 163–187 (2006).
A. Yu. Khrennikov and V. M. Shelkovich, “p-Adic multidimensional wavelets and their application to p-adic pseudo-differential operators,” (2006) [arXiv:math-ph/0612049].
A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic orthogonal wavelet bases,” p-Adic Numbers Ultrametric Anal. Appl. 1 (2), 145–156 (2009).
A. Yu. Khrennikov and V. M. Shelkovich, “Non-Haar p-adic wavelets and pseudodifferential operators,” Dokl. Akad. Nauk 418 (2), 167–170 (2008) [Dokl. Math. 77 (1), 42–45 (2008)].
A. Yu. Khrennikov and V. M. Shelkovich, “An infinite family of p-adic non-Haar wavelet bases and pseudodifferential operators,” p-Adic Numbers Ultrametric Anal. Appl. 1 (3), 204–216 (2009).
A. Yu. Khrennikov and S. V. Kozyrev, “Wavelets and the Cauchy problem for the Schrödinger equation on analytic ultrametric space,” in Proceedings of the 2nd Conference on Mathematical Modelling ofWave Phenomena 2005 (14–19 August 2005, Växjö, Sweden), eds. B. Nilsson, L. Fishman, AIP Conference Proceedings 834, 344–350 (Melville, New York, 2006).
A. Khrennikov, V. M. Shelkovich and J. H. Van Der Walt, “Adelic multiresolution analysis, construction of wavelet bases and pseudo-differential operators,” J. Fourier Anal. Appl. 19, 1323–1358 (2013).
A. Yu. Khrennikov and S. V. Kozyrev, “Replica symmetry breaking related to a general ultrametric space I: Replica matrices and functionals,” Physica A: Stat. Mech. Appl. 359, 222–240 (2006) [arXiv:condmat/0603685].
A. Yu. Khrennikov and S. V. Kozyrev, “Replica symmetry breaking related to a general ultrametric space II: RSB solutions and the n → 0 limit,” Physica A: Stat. Mech. Appl. 359, 241–266 (2006) [arXiv:condmat/0603687].
A. Yu. Khrennikov and S. V. Kozyrev, “Replica symmetry breaking related to a general ultrametric space III: The case of general measure,” Physica A: Stat. Mech. Appl. 378 (2), 283–298 (2007) [arXiv:condmat/0603694].
A. Yu. Khrennikov, F. M. Mukhamedov and J. F. Mendes, “On p-adic Gibbsmeasures of the countable state Potts model on the Cayley tree,” Nonlinearity 20, 2923–2937 (2007).
A. Khrennikov, S. Kozyrev and A. Mansson, “Hierarchical model of the actomyosin molecular motor based on ultrametric diffusion with drift,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18 (2), 1550013, 16 pp. (2015) [arXiv:1312.7528].
A. Yu. Khrennikov and S. V. Kozyrev, “Replica procedure for probabilistic algorithms as a model of gene duplication,” Dokl. Math. 84 (2), 726–729 (2011) [arXiv:1105.2893].
A. Yu. Khrennikov, “p-Adic information space and gene expression,” in Integrative Approaches to Brain Complexity, Eds. S. Grant, N. Heintz and J. Noebels, p. 14 (Wellcome Trust Publ., 2006).
A. Yu. Khrennikov and S. V. Kozyrev, “Genetic code on the dyadic plane,” Physica A: Stat. Mech. Appl. 381, 265–272 (2007) [arXiv:q-bio.QM/0701007].
A. Yu. Khrennikov and S. V. Kozyrev, “2-Adic clustering of the PAMmatrix,” J. Theor. Biol. 261, 396–406 (2009) [arXiv:0903.0137].
A. Yu. Khrennikov and S. V. Kozyrev, “Genetic code and deformation of the 2-dimensional 2-adic metric,” p-Adic Numbers Ultrametric Anal. Appl. 3 (2), 165–168 (2011).
A. Yu. Khrennikov and S. V. Kozyrev, “2-Adic degeneration of the genetic code and energy of binding of codons,” in Quantum Bio-Informatics III pp. 193–204, eds. L. Accardi, W. Freudenberg and M. Ohya (World Scientific, 2010).
A. N. Kochubei, Pseudo-Differential Equations and Stochastics overNon-Archimedean Fields (Marcel Dekker, New York, USA, 2001).
A. N. Kochubei, “A non-Archimedean wave equation,” Pacif. J. Math. 235, 245–261 (2008).
A. N. Kochubei, “Analysis and probability over infinite extensions of a local field,” Potential Anal. 10, 305–325 (1999).
A. N. Kochubei, “Hausdorff measure for a stable-like process over an infinite extension of a local field,” J. Theor. Probab. 15, 951–972 (2002).
A. N. Kochubei, Analysis in Positive Characteristic (Cambridge Univ. Press, Cambridge, 2009).
A. N. Kochubei, “Parabolic equations over the field of p-adic numbers,” Math. USSR Izv. 39, 1263–1280 (1992).
A. N. Kochubei, “Radial solutions of non-Archimedean pseudodifferential equations,” Pacific J. Math. 269 (2), 355–369 (2014).
S. V. Kozyrev, “Ultrametricity in the theory of complex systems,” Theor. Math. Phys. 185 (2), 46–360 (2015).
S. V. Kozyrev, “Methods and applications of ultrametric and p-adic analysis: From wavelet theory to biophysics,” Proc. Steklov Inst. Math. 274 suppl. (1), 1–84 (2011).
S. V. Kozyrev, A. Yu. Khrennikov and V. M. Shelkovich, “p-Adic wavelets and their applications,” Proc. Steklov Inst. Math. 285, 157–196 (2014).
S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izv. Ross. Akad. Nauk., Ser. Mat. 69 (5), 133–148 (2005) [Izv. Math. 69, 989–1003 (2005)] [arXiv:math-ph/0412062].
S. V. Kozyrev, “Wavelets and spectral analysis of ultrametric pseudodifferential operators,” Mat. Sbornik 198 (1), 103–126 (2007) [Sb. Math. 198, 97–116 (2007)] [arXiv:math-ph/0412082].
S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izvest. Math. 66 (2), 367–376 (2002) [arXiv:math-ph/0012019].
S. V. Kozyrev, “p-Adic pseudodifferential operators and p-adic wavelets,” Theor. Math. Phys. 138 (3), 322–332 (2004) [arXiv:math-ph/0303045].
S. V. Kozyrev, “Toward an ultrametric theory of turbulence,” Theor. Math. Phys. 157 (3), 1711–1720 (2008) [arXiv:0803.2719].
S. V. Kozyrev and A. Yu. Khrennikov, “Localization in space for a free particle in ultrametric quantum mechanics,” Dokl. Akad. Nauk 411 (3), 319–322 (2006) [Dokl. Math. 74 (3), 906–909 (2006)].
S. V. Kozyrev, “p-Adic pseudodifferential operators: Methods and applications,” Proc. Steklov Inst. Math. 245, 143–153 (2004).
S. V. Kozyrev, V. Al. Osipov and V. A. Avetisov, “Nondegenerate ultrametric diffusion,” J. Math. Phys. 46, 063302–063317 (2005).
S. V. Kozyrev and A. Yu. Khrennikov, “p-Adic integral operators in wavelet bases,” Dokl. Akad. Nauk 437 (4), 457–461 (2011) [Dokl. Math. 83 (2), 209–212 (2011)].
S. V. Kozyrev, “Dynamics on rugged landscapes of energy and ultrametric diffusion,” p-Adic Numbers Ultrametric Anal. Appl. 2 (2), 122–132 (2010).
S. V. Kozyrev, “Model of protein fragments and statistical potentials,” p-Adic Numbers Ultrametric Anal. Appl. 8 (4), 325–337 (2016) [arXiv:1504.03940].
S. V. Kozyrev and A. Yu. Khrennikov, “2-Adic numbers in genetics and Rumer’s symmetry,” Dokl. Math. 81 (1), 128–130 (2010).
S. V. Kozyrev, “Multidimensional clustering and hypergraphs,” Theor. Math. Phys. 164 (3), 1163–1168 (2010).
S. V. Kozyrev, “Cluster networks and Bruhat-Tits buildings,” Theor. Math. Phys. 180 (2), 958–966 (2014) [arXiv:1404.6960].
A. V. Kosyak, A. Khrennikov and V. M. Shelkovich, “Wavelet bases on adele rings,” Dokl. Math. 85, 75–79 (2012).
A. V. Kosyak, A. Khrennikov and V. M. Shelkovich, “Pseudodifferential operators on adele rings and wavelet bases,” Dokl. Math. 85, 358–362 (2012).
Yu. I. Manin, “Numbers as functions,” p-Adic Numbers Ultrametric Anal. Appl. 5 (4), 313–325 (2013).
Yu. I. Manin, “Painleve VI equations in p-adic time,” p-Adic Numbers Ultrametric Anal. Appl. 8 (3), 217–224 (2016).
M. Greenfield, M. Marcolli and K. Teh, “Twisted spectral triples and quantum statistical mechanical systems,” p-Adic Numbers Ultrametric Anal. Appl. 6 (2), 81–104 (2014).
M. Marcolli and N. Tedeschi, “Multifractals, Mumford curves and eternal inflation,” p-Adic Numbers Ultrametric Anal. Appl. 6 (2), 135–154 (2014).
J. Marcinek and M. Marcolli, “KMS weights on higher rank buildings,” p-Adic Numbers Ultrametric Anal. Appl. 8 (1), 45–67 (2016).
M. Marcolli, “Cyclotomy and endomotives,” p-Adic Numbers Ultrametric Anal. Appl. 1 (3), 217–263 (2009).
Y. Meyer, Wavelets and Operators (Cambridge Univ. Press, Cambridge, 1992).
M. Mezard, G. Parisi and M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore, 1987).
M. D. Missarov and R. G. Stepanov, “Asymptotic properties of combinatorial optimization problems in padic space,” p-Adic Numbers Ultrametric Anal. Appl. 3 (2), 114–128 (2011).
M. D. Missarov, p-Adic renormalization group solutions and the euclidean renormalization group conjectures p-Adic Numbers Ultrametric Anal. Appl. 4 (2), 109–114 (2012).
A. Monna, Analyse non-Archimedienne (Springer-Verlag, New York, 1970).
A. Morozov, “Are there p-adic knot invariants?,” Theor. Math. Phys. 187 (1), 447–454 (2016) [arXiv:1509.04928].
F. Mukhamedov and U. Rozikov, “On inhomogeneous p-adic Potts model on a Cayley tree,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8 (2), 277–290 (2005).
F. Mukhamedov and H. Akin, “The p-adic Potts model on the Cayley tree of order three,” Theor. Math. Phys. 176 (3), 1267–1279 (2013).
F. Mukhamedov, “A dynamical system approach to phase transitions for p-adic Potts model on the Cayley tree of order two,” Rep. Math. Phys. 70 (3), 385–406 (2012).
F. Mukhamedov, “On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree,” p-Adic Numbers Ultrametric Anal. Appl. 2 (3), 241–251 (2010).
F. Mukhamedov, “On the existence of generalizedGibbs measures for the one-dimensional p-adic countable state Potts model,” Proc. Steklov Inst. Math. 265 (1), 165–176 (2009).
F. Mukhamedov, M. Saburov and O. Khakimov, “On p-adic Ising-Vannimenus model on an arbitrary order Cayley tree,” J. Stat. Mech.: Theory Exper. 5, P05032 (2015).
F. Mukhamedov and O. Khakimov, “On periodic Gibbs measures of p-adic Potts model on a Cayley tree,” p-Adic Numbers Ultrametric Anal. Appl. 8 (3), 225–235 (2016).
F. Murtagh and A. Heck, Multivariate Data Analysis (Springer Science & BusinessMedia, 2012).
F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an overview,” Wiley Interdisci. Reviews: Data Mining and Knowledge Discovery 2 (1), 86–97 (2012).
F. Murtagh and P. Legendre, “Ward’s hierarchical agglomerative clustering method: which algorithms implementWard’s criterion?,” J. Classif. 31 (3), 274–295 (2014).
F. Murtagh, “Sparse p-adic data coding for computationally efficient and effective big data analytics,” p-Adic Numbers Ultrametric Anal. Appl. 8 (3), 236–247 (2016).
F. Murtagh, Multidimensional Clustering Algorithms (Physica-Verlag, Heidelberg, 1985).
F. Murtagh, “From data to the p-adic or ultrametric model,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 58–68 (2009).
S. K. Nechaev and O. A. Vasiliev, “On the metric structure of ultrametric spaces,” Proc. Steklov Inst. Math. 245, 169–188 (2004) [arXiv:cond-mat/0310079].
A. N. Nekrasov, “Analysis of the information structure of protein sequences: a new method for analyzing the domain organization of proteins,” J. Biomol. Struct. Dyn. 21 (5), 615–624 (2004).
A. N. Nekrasov, A. A. Anashkina and A. I. Zinchenko, “A new paradigm of protein structural organization,” in Proceedings of the 2-nd International Conference “Theoretical Approaches to Bioinformatic Systems” (TABIS. 2013), pp. 1–23 (Belgrade, Serbia, Sept. 17–22, 2013).
I. Ya. Novikov and M. A. Skopina, “Why are Haar bases in various structures the same?,”Mat. Zametki 91 (6), 950–953 (2012).
A. T. Ogielski and D. L. Stein, “Dynamics on ultrametric spaces,” Phys. Rev. Lett. 55, 1634–1637 (1985).
G. Parisi and N. Sourlas, “p-Adic numbers and replica symmetry breaking,” Europ. Phys. J. B 14, 535–542 (2000) [arXiv:cond-mat/9906095].
G. Rammal, M. A. Toulouse and M. A. Virasoro, “Ultrametricity for physicists,” Rev. Mod. Phys. 58, 765–788 (1986).
J. J. Rodriguez-Vega and W. A. Zuniga-Galindo, “Taibleson operators, p-adic parabolic equations and ultrametric diffusion,” Pacif. J. Math. 237, 327–347 (2008).
V. M. Shelkovich and M. Skopina, “p-Adic Haar multiresolution analysis and pseudo-differential operators,” J. Fourier Anal. Appl. 15 (3), 366–393 (2009).
S. M. Torba and W. A. Zuniga-Galindo, “Parabolic type equations and Markov stochastic processes on adeles,” J. Fourier Anal. Appl. 19 (4), 792–835 (2013).
M. Talagrand, Spin glasses, a Challenge forMathematicians (Springer-Verlag, 2003).
C. Micheletti, F. Seno and A. Maritan, “Recurrent oligomers in proteins: An optimal scheme reconciling accurate and concise backbone representations in automated folding and design studies,” Proteins: Struct. Funct. Genet. 40, 662–674 (2000).
A. G. de Brevern, C. Etchebest and S. Hazout, “Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks,” Proteins: Struct. Funct. Genet. 41, 271–287 (2000).
A. Y. Grosberg, S. K. Nechaev and E. I. Shakhnovich, “The role of topological constraints in the kinetics of collapse of macromolecules,” J. Physique 49, 2095–2100 (1988).
J. D. Halverson, J. Smrek, K. Kremer, A. Y. Grosberg, “From a melt of rings to chromosome territories: the role of topological constraints in genome folding,” Rep. Prog. Phys. 77, 022601, 24 pp. (2014).
M. Imakaev, K. Tchourine, S. Nechaev and L. Mirny, “Effects of topological constraints on globular polymers,” Soft Matter 11, 665–671 (2015).
G. Fudenberg, G. Getz, M. Meyerson and L. A. Mirny, “High order chromatin architecture shapes the landscape of chromosomal alterations in cancer,” Nature Biotech. 29, 1109–1113 (2011).
B. Bonev and G. Cavalli, “Organization and function of the 3D genome,” Nature Rev. Genet. 17, 661–678 (2016).
G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science 313, 504–507 (2006).
Y. Bengio, “Learning deep architectures for AI,” Found. TrendsMach. Learn. 2 (1), (2009).
C. Hennig, M. Meila, F. Murtagh and R. Rocci, Handbook of Cluster Analysis (CRC Press, 2015).
C. Linnaeus, Systema naturae (Leiden, 1735).
V. A. Lemin, “Finite ultrametric spaces and computer science,” pp. 219–241, in Categorical Perspectives, Trends in Mathematics (Springer, 2001).
F. Bruhat and J. Tits, “Groupes reductifs sur un corps local, I. Donnees radicielles valuees,” Publ. Math. IHES 41, 5–251 (1972).
P. B. Garrett, Buildings and Classical Groups (Chapman and Hall, London, 1997).
A. Strehl, J. Ghosh and C. Cardie, “Cluster ensembles–a knowledge reuse framework for combining multiple partitions,” J. Mach. Learn. Res. 3, 583–617 (2002).
E. Bauer and R. Kohavi, “An empirical comparison of voting classification algorithms: bagging, boosting, and variants,” Mach. Learn. 36, 105–139 (1999).
D. H. Huson, R. Rupp and C. Scornavacca, Phylogenetic Networks (Cambridge Univ. Press, Cambridge, 2010).
A. Dress, K. T. Huber, J. Koolen, V. Moulton and A. Spillner, Basic Phylogenetic Combinatorics (Cambridge Univ. Press, Cambridge, 2012).
E. V. Koonin, The Logic of Chance: The Nature and Origin of Biological Evolution (FT Press Science, 2012).
J.-L. Starck, F. Murtagh and J. Fadili, Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis (Cambridge Univ. Press, 2015).
M. N. Khokhlova and I. V. Volovich, “Modeling theory and hypergraph of classes,” Proc. Steklov Inst. Math. 245, 266–272 (2004).
J. Q. Trelewicz and I. V. Volovich, “Analysis of business connections utilizing theory of topology of random graphs,” in p-AdicMathematical Physics AIP Conf. Proc. 826, 330–344 (Melville, New York, 2006).
S. Albeverio and W. Karwowski, Diffusion on p-Adic Numbers (Bielefeld-Bochum Stochastik, 1990).
A. Khrennikov and M. Nilsen. p-Adic Deterministic and Random Dynamics, Math. Appl. 574 (Kluwer Acad. Publishers, Dordrecht, 2004).
S. Evans, “Local fields, Gaussian measures, and Brownian motions,” Topics in Lie Groups and Probability: Boundary Theory (J. Taylor ed.) CRM Proceedings and Lecture Notes 28, American Math. Society.
G. Parisi, “Infinite number of order parameters for spin-glasses,” Phys. Rev. Lett. 43, 1754 (1979).
M. Mezard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasoro, “Nature of the spin-glass phase,” Phys. Rev. Lett. 52, 1156 (1984).
P. Diaconis, “Random walk on groups: characters and geometry,” C. M. Campbell et al. (eds) (Groups St. Andrews, 2001) Cambridge Univ. Press 1 120–142, (2003).
S. Evans, “Local field U-statistics,” Algebraic Methods in Statistics and Probability (Marlos A. G. Viana and Donald St. P. Richards eds.) Contemp. Math. 287, (2001).
P. P. Varju, “Random walks in compact groups,” DocumentaMath. 18, 1137–1175 (2013).
S. Mustafa, “Random walks on unimodular p-adic groups,” Stoch. Proc. Appl. 115, 927–937 (2005).
V. Anashin, A. Khrennikov and E. Yurova, “T-functions revisited: new criteria for bijectivity/transitivity,” Designs Codes Crypt. 7, 383–407 (2014).
V. Anashin, “Uniformly distributed sequences of p-adic integers,” Math. Notes 55, 109–133 (1994).
V. Anashin, “Ergodic transformations in the space of p-adic integers,” Proc. Int. Conf. on p-adic Mathematical Physics, AIP Conference Proceedings 826, 3–24 (2006).
V. Anashin, A. Khrennikov and E. Yurova, “Ergodicity criteria for non-expanding transformations of 2-adic spheres,” Disc. Cont. Dyn. Syst. 34, 367–377 (2014).
A. Khrennikov and E. Yurova, “Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis,” J. Number Theor. 133 (2), 484–491 (2013).
E. Yurova Axelsson, “On recent results of ergodic property for p-adic dynamical systems,” p-Adic Numbers Ultrametric Anal. Appl. 6, 235–257 (2014).
A. Khrennikov and E. Yurova, “Criteria of ergodicity for p-adic dynamical systems in terms of coordinate functions,” Chaos Solit. Fract. 60, 11–30 (2014).
A. Khrennikov and E. Yurova, “Secure cloud computations: Description of (fully)homomorphic ciphers within the p-adic model of encryption,” (2016) [arXiv:1603.07699 [cs. CR]].
H. Qusay, “Demystifying cloud computing,” J. Defense Softw. Engin., CrossTalk N 1/2, 16–21 (2011).
P. Mell and T. Grance, “The NIST definition of cloud computing,” Technical report, National Institute of Standards and Technology: U. S. Department of Commerce. Special publication 800–145 (2011).
A. Khrennikov, “Human subconscious as the p-adic dynamical system’,’ J. Theor. Biol. 193, 179–196 (1998).
A. Khrennikov, Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena, Ser. Fundamental Theories of Physics (Kluwer, Dordreht, 2004).
A. Khrennikov, Classical and Quantum Mental Models and Freud’s Theory of Unconscious Mind (VäxjöUniv. Press, Växjö, 2002).
F. Murtagh, “Ultrametric model of mind, I: Review,” p-Adic Numbers Ultrametric Anal. Appl. 4, 193–206 (2012).
F. Murtagh, “Ultrametric model of mind, II: Application to text content analysis,” p-Adic Numbers Ultrametric Anal. Appl. 4, 207–221 (2012).
F. Murtagh, “The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking,” p-Adic Numbers Ultrametric Anal. Appl. 5, 326–337 (2013).
G. Iurato and A. Khrennikov, “Hysteresis model of unconscious-conscious interconnection: Exploring dynamics on m-adic trees,” p-Adic Numbers Ultrametric Anal. Appl. 7, 312–321 (2015).
G. Iurato, A. Khrennikov and F. Murtagh, “Formal foundations for the origins of human consciousness,” p-Adic Numbers Ultrametric Anal. Appl. 8, 249–279 (2016).
G. Iurato and A. Khrennikov, “On the topological structure of a mathematical model of human unconscious,” p-Adic Numbers Ultrametric Anal. Appl. 9, 78–81 (2017).
A. Khrennikov and N. Kotovich, “Towards ultrametric modeling of unconscious creativity,” Int. J. Cogn. Inform. Natural Intell. 8, 98–109 (2014).
A. Khrennikov, K. Oleschko and M. de Jesus Correa Lopez, “Modeling fluid’s dynamics with master equations in ultrametric spaces representing the treelike structure of capillary networks,” Entropy 18, 249 (2016).
A. Yu. Khrennikov, K. Oleschko and M. de Jesus Correa Lopez, “Applications of p-adic numbers: from physics to geology,” Contemp. Math. 665, 121–131 (2016).
A. Khrennikov, K. Oleschko and M. de Jesus Correa Lopez, “Application of p-adic wavelets to model reaction-diffusion dynamics in random porous media,” J. Fourier Anal. Appl. 22, 809–822 (2016).
K. Oleschko and A. Khrennikov, “Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions,” Theor. Math. Phys. 190, 154–163 (2017).
L. A. Richards, “Capillary conduction of liquids through porous mediums,” Physics 1 (5), 318–333 (1931).
J. Richter, The Soil as a Reactor (Catena, 1987).
M. Th. van Genuchten, “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Sc. Soc. America J. 44 (5), 892–898 (1980).
S. V. Kozyrev, “Ultrametric analysis and interbasin kinetics,” AIP Conf. Proc. 826, 121–128 (2006).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “The Cauchy problems for evolutionary pseudodifferential equations over p-adic field and the wavelet theory,” J. Math. Anal. Appl. 375, 82–98 (2011).
A. Yu. Khrennikov and A. N. Kochubei, “p-Adic analogue of the porous medium equation,” (2016) [arXiv:1611.08863 [math. AP]].
A. Wiles, “Modular elliptic curves and Fermat’s last theorem, Annals Math. 141, 443–551 (1995)
R. Taylor and A. Wiles, “Ring-theoretic properties of certain Hecke algebras,” Annals Math. 141, 553–572 (1995)
Yves Hellegouarch, Invitation to the Mathematics of Fermat-Wiles (Academic Press, 2001).
R. P. Langlands, “Problems in the theory of automorphic forms,” Lect. Notes Math. 170, 18–61 (Springer Verlag, 1970).
L. Hormander, The Analysis of Linear Partial Differential Operators, III Pseudo-Differential Operators, IV Fourier Integral Operators (Springer-Verlag, 1985)
M. A. Shubin, Pseudodifferential Operators and Spectral Theory (Nauka, 1978).
N. N. Bogoliubov and D. V. Schirkov, Introduction to the Theory of Quantized Fields (Springer, 1984).
Yu. I. Manin, “Reflections on arithmetical physics,” in Poiana Brasov 1987, Proceedings, Conformal Invariance and String Theory, 293–303 (Acad. Press, Boston 1989).
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function (Clarendon Press, Oxford, 1986)
A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function (Walter de Gruyter Publishers, Berlin-New York 1992
K. Chandrasekharan, Arithmetic Functions (Springer, 1972).
A. Kapustin and E. Witten, “Electric-magnetic duality and the geometric Langlands program,” (2006) [hep-th/0604151]
S. Gukov and E. Witten, “Gauge theory, ramification, and the geometric Langlands program,” (2006) [hep-th/0612073]
E. Frenkel, “Lectures on the Langlands program and conformal field theory,” (2005) [hep-th/0512172].
N. M. Katz and P. Sarnak, “Zeroes of zeta-functions and symmetry,” Bull. Amer. Math. Soc. (N. Y.) 36, 1–26 (1999)
J. P. Keating and N. C. Snaith, “Random matrix theory and L-functions at s = 1/2,” Comm. Math. Phys. 214, 91–110 (2000).
D. Harlow, S. Shenker, D. Stanford and L. Susskind, “Eternal symmetree,” Phys. Rev. D 85, 063516 (2012) [arXiv:1110.0496].
Yu. I. Manin and M. Marcolli, “Big Bang, blowup, and modular curves: algebraic geometry in cosmology,” SIGMA 10, 073 (2014) [arXiv:1402.2158].
Yu. I. Manin and M. Marcolli, “Symbolic dynamics, modular curves, and Bianchi IX cosmologies,” (2015) [arXiv:1504.04005].
W. Fan, F. Fathizadeh and M. Marcolli, “Modular forms in the spectral action of Bianchi IX gravitational instantons,” (2015) [arXiv:1511.05321].
Zhi Hu and Sen Hu, “Symplectic group and Heisenberg group in p-adic quantum mechanics,” [arXiv:1502.01789].
S. S. Gubser, J. Knaute, S. Parikh, A. Samberg and P. Witaszczyk, “p-adic AdS/CFT,” Comm. Math. Phys. 352 (3), 1019–1059 (2017) [arXiv:1605.01061].
M. Heydeman, M. Marcolli, I. Saberi and B. Stoica, “Tensor networks, “p-Adic fields, and algebraic curves: arithmetic and the AdS3/CFT2 correspondence,” (2016) [arXiv:1605.07639].
S. S. Gubser, M. Heydeman, C. Jepsen, M. Marcolli, S. Parikh, I. Saberi, B. Stoica and B. Trundy, “Edge length dynamics on graphs with applications to p-adic AdS/CFT,” (2016) [arXiv:1612.09580].
S. S. Gubser, C. Jepsen, S. Parikh and B. Trundy, “O(N) and O(N) and O(N),” (2017) [arXiv:1703.04202].
Spin Glasses and Biology, Ed. D. L. Stein (World Scientific, Singapore, 1992).
W. Schikhof, Ultrametric Calculus: an introduction to p-adic analysis (Cambridge Univ. Press, 1985).
R. Unger, D. Harel, S. Wherland and J. L. Sussman, “A 3D building blocks approach to analyzing and predicting structure of proteins,” Proteins: Struct. Funct. Genet. 5, 355–373 (1989).
V. S. Varadarajan, “Path integrals for a class of p-adic Schrödinger equations,” Lett. Math. Phys. 39, 97–106 (1997).
V. S. Varadarajan, “Arithmetic quantum physics: why, what, and whither,” in Selected Topics of p-Adic Mathematical Physics and Analysis, Proc. V. A. Steklov Inst. Math. 245, 273–280 (2005).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).
V. S. Vladimirov, “Generalized functions over the field of p-adic numbers,” Russ. Math. Surv. 43, 19–64 (1988).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, “Spectral theory in p-adic quantum mechanics, and representation theory,” Math. USSR-Izv. 36 (2), 281–309 (1991).
V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Comm. Math. Phys. 123, 659–676 (1989).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, “The spectral theory in the p-adic quantum mechanics,” Izvestia Akad. Nauk SSSR, Ser. Mat. 54, 275–302 (1990).
V. S. Vladimirov and Ya. I. Volovich, “Nonlinear dynamics equation in p-adic string theory,” Theor. Math. Phys. 138, 297 (2004) [math-ph/0306018].
V. S. Vladimirov, “On the non-linear equation of a p-adic open string for a scalar field,” Russian Math. Surv. 60 (6), 1077–1092 (2005).
V. S. Vladimirov, “Nonlinear equations for p-adic open, closed, and open-closed strings,” Theor. Math. Phys. 149 (3), 1604–1616 (2006).
V. S. Vladimirov, “On the equations for p-adic closed and open strings,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 79–87 (2009).
V. S. Vladimirov, “Solutions of p-adic string equations,” Theor. Math. Phys. 167 (2), 539–546 (2011).
V. S. Vladimirov, “Nonexistence of solutions of the p-adic strings,” Theor. Math. Phys. 174 (2), 178–185 (2013).
I. V. Volovich, “D-branes, black holes and SU(∞) gauge theory,” (1996) [hep-th/9608137]
I. V. Volovich, “From p-adic strings to etale strings,” Proc. SteklovMath. Inst. 203, 41–48 (1994).
I. V. Volovich, “p-Adic string,” Class. Quant. Grav. 4 (4), L83–L87 (1987).
I. V. Volovich, “Number theory as the ultimate physical theory,” p-Adic Numbers Ultrametric Anal. Appl. 2 (1), 77–87 (2010).
I. V. Volovich, “Time irreversibility problem and functional formulation of classical mechanics,” (2009) [arXiv:0907.2445].
A. S. Trushechkin and I. V. Volovich, “Functional classical mechanics and rational numbers,” p-Adic Numbers Ultrametric Anal. Appl. 1 (4), 361–367 (2009.
I. V. Volovich, “Functional stochastic classical mechanics,” p-Adic Numbers Ultrametric Anal. Appl. 7 (1), 56–70 (2015).
I. V. Volovich, “Bogolyubov’s equations and functional mechanics,” Theor. Math. Phys. bf 164 (3), 1128–1135 (2010).
I. V. Volovich, “Randomness in classical mechanics and quantum mechanics,” Found. Phys. 41 (3), 516–528 (2011).
K. Yasuda, “Extension of measures to infinite dimensional spaces over p-adic field,” Osaka J. Math. 37, 967–985 (2000).
K. Yasuda, “Additive processes on local fields,” J. Math. Sci. Univ. Tokyo 3, 629–654 (1996).
K. Yasuda, “Limit theorems for p-adic valued asymmetric semistable laws and processes,” p-Adic Numbers Ultrametric Anal. Appl. 9 (1), 62–77 (2017).
E. Zelenov, “p-Adic law of large numbers,” Izv. RAN Ser. Math. 80 (3), 31–42 (2016).
E. Zelenov, “p-Adic Brownian motion,” Izv. RAN Ser. Math. 80 (6), 92–102 (2016).
E. I. Zelenov, “Adelic decoherence,” p-Adic Numbers Ultrametric Anal. Appl. 4 (1), 84–87 (2012).
A. P. Zubarev, “On stochastic generation of ultrametrics in high-dimensional Euclidean spaces,” p-Adic Numbers Ultrametric Anal. Appl. 6 (2), 155–165 (2014).
W. A. Zuniga-Galindo, “Parabolic equations and Markov processes over p-adic fields,” Potential Anal. 28, 185–200 (2008).
W. A. Zuniga-Galindo, “Pseudo-differential equations connected with p-adic forms and local zeta functions,” Bull. Austral. Math. Soc., 70 (1), 73–86 (2004).
W. A. Zuniga-Galindo, “Fundamental solutions of pseudo-differential operators over p-adic fields,” Rend. Sem. Mat. Univ. Padova 109, 241–245 (2003).
W. A. Zuniga-Galindo, “Local zeta functions and fundamental solutions for pseudo-differential operators over p-adic fields,” p-Adic Numbers Ultrametric Anal. Appl. 3 (4), 344–358 (2011).
W. A. Zuniga-Galindo, Pseudodifferential Equations Over Non-Archimedean Spaces, Lecture Notes in Mathematics 2174 (Springer, 2017).
J. Galeano-Penaloza and W. A. Zuniga-Galindo, “Pseudo-differential operators with semi-quasielliptic symbols over p-adic fields,” J. Math. Anal. Appl. 386 (1), 32–49 (2012).
W. A. Zuniga-Galindo, “The Cauchy problem for non-Archimedean pseudodifferential equations of Klein–Gordon type,” J. Math. Anal. Appl. 420 (2), 1033–1050 (2014).
W. A. Zuniga-Galindo, “The non-Archimedean stochastic heat equation driven by Gaussian noise,” J. Fourier Anal. Appl. 21 (3), 600–627 (2015).
W. A. Zuniga-Galindo, “Non-Archimedean white noise, pseudodifferential stochastic equations, and massive Euclidean fields,” J. Fourier Anal. Appl. 23 (2), 288–323 (2017).
Author information
Authors and Affiliations
Corresponding authors
Additional information
The text was submitted by the authors in English.
Rights and permissions
About this article
Cite this article
Dragovich, B., Khrennikov, A.Y., Kozyrev, S.V. et al. p-Adic mathematical physics: the first 30 years. P-Adic Num Ultrametr Anal Appl 9, 87–121 (2017). https://doi.org/10.1134/S2070046617020017
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2070046617020017