Skip to main content
Log in

The comb representation of compact ultrametric spaces

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

We call a comb a map f: I → [0,∞), where I is a compact interval, such that {fε} is finite for any ε > 0. A comb induces a (pseudo)-distance \({\overline d _f}\) on {f = 0} defined by \({\overline d _f}\left( {s,t} \right) = {\max _{\left( {s \wedge t,s \vee t} \right)}}f\). We describe the completion \(\overline I \) of {f = 0} for this metric, which is a compact ultrametric space called the comb metric space.

Conversely, we prove that any compact, ultrametric space (U, d) without isolated points is isometric to a comb metric space. We show various examples of the comb representation of well-known ultrametric spaces: the Kingman coalescent, infinite sequences of a finite alphabet, the p-adic field and spheres of locally compact real trees. In particular, for a rooted, locally compact real tree defined from its contour process h, the comb isometric to the sphere of radius T centered at the root can be extracted from h as the depths of its excursions away from T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aldous, “The continuum random tree. I,” Annals Probab. 19 (1), 1–28 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Aldous and L. Popovic, “A critical branching process model for biodiversity,” Adv. Appl. Probab. 37 (4), 1094–1115 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Bertoin, Random Fragmentation and Coagulation Processes, vol. 102, Cambridge Studies in Advanced Math. (Cambridge Univ. Press, Cambridge, 2006).

    Book  Google Scholar 

  4. A. A. Cuoco, “Visualizing the p-adic integers,” Amer.Math. Month. 98 (4), 355–364 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Dress, V. Moulton and W. Terhalle, “T-theory: An overview,” Europ. J. Combin. 17 (2–3), 161–175 (1996).

    Article  MATH  Google Scholar 

  6. S. N. Evans, Probability and Real Trees: École d’étéde Probabilités de Saint-Flour XXXV-2005 (Springer, 2008).

    Book  MATH  Google Scholar 

  7. B. R. Gelbaum and J.M. Olmsted, Counterexamples in Analysis (Dover Publications, 2003).

    MATH  Google Scholar 

  8. J. E. Holly, “Pictures of ultrametric spaces, the p-adic numbers, and valued fields,” Amer. Math. Month. 108 (8), 721–728 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Kingman, “The coalescent,” Stoch. Proc. Appl. 13 (3), 235–248 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Lambert, “The contour of splitting trees is a Lévy process,” Annals Probab. 38 (1), 348–395 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Lambert, “Probabilistic models for the (sub)tree(s) of life: Lecture notes for the XIX Brazilian school of probability,” Brazilian J. Probab. Stat., arXiv:1603.03705 (2016).

    Google Scholar 

  12. A. Lambert and L. Popovic, “The coalescent point process of branching trees,” Ann. Appl. Prob. 23 (1), 99–144 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Lambert and G. Uribe Bravo, “Totally ordered, measured trees and splitting trees with infinite variation,” arXiv:1607.02114 (2016).

    Google Scholar 

  14. R. Lyons, “Equivalence of boundary measures on covering trees of finite graphs,” Erg. Theory Dynam. Syst. 14 (03), 575–597 (1994).

    MathSciNet  MATH  Google Scholar 

  15. E. A. Petrov and A. A. Dovgoshey, “On the Gomory-Hu inequality,” J. Math. Sci. (N.Y.) 198 (4), 392–411 (2014). Translation of Ukr. Mat. Visn. 10 (2013) (4), 469–496 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Popovic, “Asymptotic genealogy of a critical branching process,” Ann. Appl. Prob., pp. 2120–2148 (2004).

    Google Scholar 

  17. I. Protasov and K. Protasova, “The comb-like representations of cellular ordinal balleans,” Alg. Disc.Math. 21 (2), 282–286 (2016).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lambert.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambert, A., Uribe Bravo, G. The comb representation of compact ultrametric spaces. P-Adic Num Ultrametr Anal Appl 9, 22–38 (2017). https://doi.org/10.1134/S2070046617010034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046617010034

Key words

Navigation