Advertisement

On periodic Gibbs measures of p-adic Potts model on a Cayley tree

  • F. MukhamedovEmail author
  • O. Khakimov
Research Articles

Abstract

In the present paper, we study the existence of periodic p-adic quasi Gibbs measures of p-adic Potts model over the Cayley tree of order two. We first prove that the renormalized dynamical system associated with the model is conjugate to the symbolic shift. As a consequence of this result we obtain the existence of countably many periodic p-adic Gibbs measures for the model.

Keywords

p-adic numbers Potts model p-adic quasi Gibbs measure periodic shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Anashin and A. Khrennikov, Applied Algebraic Dynamics (Walter de Gruyter, Berlin, New York, 2009).CrossRefzbMATHGoogle Scholar
  2. 2.
    I. Ya. Areféva, “On finite-temperature string field theory and p-adic string,” p-Adic Numbers Ultrametric Anal. Appl. 7, 111–120 (2015).MathSciNetCrossRefGoogle Scholar
  3. 3.
    I. Ya. Areféva, B. G. Dragovich and I. V. Volovich, “p-Adic summability of the anharmonic ocillator,” Phys. Lett. B 200, 512–514 (1988).MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. Ya. Areféva, B. Dragovich, P. H. Frampton and I. V. Volovich, “The wave function of the Universe and p-adic gravity,” Int. J. Modern Phys. A 6, 4341–4358 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    V. A. Avetisov, A. H. Bikulov and S. V. Kozyrev, “Application of p-adic analysis to models of spontaneous breaking of the replica symmetry,” J. Phys. A: Math. Gen. 32, 8785–8791 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Besser and C. Deninger, “p-Adic Mahler measures,” J. Reine Angew.Math. 517, 19–50 (1999).MathSciNetzbMATHGoogle Scholar
  7. 7.
    B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V.Volovich, “On p-adicmathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 1–17 (2009).MathSciNetCrossRefGoogle Scholar
  8. 8.
    A. H. Fan, L. M. Liao, Y. F. Wang and D. Zhou, “p-Adic repellers in Qp are subshifts of finite type,” C. R. Math. Acad. Sci. Paris 344, 219–224 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. G. O. Freund and M. Olson, “Non-Archimedian strings,” Phys. Lett. B 199, 186–190 (1987).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. N. Ganikhodjaev, F. M. Mukhamedov and U. A. Rozikov, “Phase transitions of the Ising model on Z in the p-adic number field,” Uzbek. Math. J. 4, 23–29 (1998) [Russian].MathSciNetzbMATHGoogle Scholar
  11. 11.
    N. N. Ganikhodjaev, F. M. Mukhamedov and U. A. Rozikov, “Existence of a phase transition for the Potts p-adic model on the set Z,” Theor. Math. Phys. 130, 425–431 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    D. Gandolfo, U. Rozikov and J. Ruiz, “On p-adic Gibbs measures for hard core model on a Cayley Tree,” Markov Proc. Rel. Fields 18 (4), 701–720 (2012).MathSciNetzbMATHGoogle Scholar
  13. 13.
    M. Khamraev and F. M. Mukhamedov, “On p-adic model on the Cayley tree,” J. Math. Phys. 45, 4025–4034 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Yu. Khrennikov, “p-Adic valued probability measures,” Indag. Mathem. N.S. 7, 311–330 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publ., Dordrecht, 1994).CrossRefzbMATHGoogle Scholar
  16. 16.
    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordrecht, 1997).CrossRefzbMATHGoogle Scholar
  17. 17.
    A. Yu. Khrennikov, “Generalized probabilities taking values in non-Archimedean fields and in topological groups,” Russian J. Math. Phys. 14, 142–159 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Yu. Khrennikov, “Cognitive processes of the brain: an ultrametric model of information dynamics in unconsciousness,” p-Adic Numbers Ultrametric Anal. Appl. 6, 293–302 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    A. Yu. Khrennikov and S. V. Kozyrev, “Ultrametric random field,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 199–213 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    A. Yu. Khrennikov and S. V. Kozyrev, “Replica symmetry breaking related to a general ultrametric space I,II,III,” Physica A 359, 222–240 (2006); 359, 241–266 (2006); 378, 283–298 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Yu. Khrennikov and S. Ludkovsky, “Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields,” Markov Proc. Rel. Fields 9, 131–162 (2003).MathSciNetzbMATHGoogle Scholar
  22. 22.
    A. Khrennikov, F. Mukhamedov and J. F. F. Mendes, “On p-adic Gibbs measures of countable state Potts model on the Cayley tree,” Nonlinearity 20, 2923–2937 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    A. Yu. Khrennikov and M. Nilsson, p-Adic Deterministic and Random Dynamical Systems (Kluwer, Dordreht, 2004).CrossRefGoogle Scholar
  24. 24.
    A. Yu. Khrennikov, S. Yamada and A. vanRooij, “Measure-theoretical approach to p-adic probability theory,” Annals Math. Blaise Pascal 6, 21–32 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Function (Berlin, Springer, 1977).CrossRefzbMATHGoogle Scholar
  26. 26.
    S. V. Ludkovsky, “Non-Archimedean valued quasi-invariant descending at infinity measures,” Int. J. Math. Math. Sci. 2005 (23), 3799–3817 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    A. Monna and T. Springer, “Integration non-Archimedienne 1, 2,” Indag. Math. 25, 634–653 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    F. Mukhamedov, “On existence of generalized Gibbs measures for one dimensional p-adic countable state Potts model,” Proc. Steklov Inst. Math. 265, 165–176 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    F. Mukhamedov, “On p-adic quasi Gibbs measures for q + 1-state Potts model on the Cayley tree,” p-Adic Numbers Ultametric Anal. Appl. 2, 241–251 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    F. Mukhamedov, “A dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two,” Rep. Math. Phys. 70, 385–406 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    F. Mukhamedov, “On dynamical systems and phase transitions for Q + 1-state p-adic Potts model on the Cayley tree,” Math. Phys.Anal. Geom. 53, 49–87 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    F. Mukhamedov, “Recurrence equations over trees in a non-archimedean context,” p-Adic Numbers Ultrametric Anal. Appl. 6, 310–317 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    F. Mukhamedov, “Renormalization method in p-adic model on the Cayley tree,” Int. J. Theor. Phys. 54, 3577–3595 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    F. Mukhamedov and H. Akin, “On p-adic Potts model on the Cayley tree of order three,” Theor. Math. Phys. 176, 1267–1279 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    F. M. Mukhamedov and U. A. Rozikov, “On Gibbs measures of p-adic Potts model on the Cayley tree,” Indag. Math. N.S. 15, 85–100 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    F. M. Mukhamedov and U. A. Rozikov, “On inhomogeneous p-adic Potts model on a Cayley tree,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 277–290 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    U. A. Rozikov and O. N. Khakimov, “Description of all translation-invariant p-dic Gibbs measures for the Potts model on a Cayley tree,” Markov Proces. Rel. Fields 21, 177–204 (2015).MathSciNetzbMATHGoogle Scholar
  38. 38.
    U. A. Rozikov and O. N. Khakimov, “p-Adic Gibbs measures and Markov random fields on countable graphs,” Theor. Math. Phys. 175, 518–525 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Sci., Singapoure, 1994).CrossRefzbMATHGoogle Scholar
  40. 40.
    I. V. Volovich, “Number theory as the ultimate physical theory,” p-Adic Numbers Ultrametric Anal. Appl. 2, 77–87 (2010); Preprint CERN TH.4781/87 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    I. V. Volovich, “p-Adic string,” Class. Quan. Grav. 4, L83–L87 (1987).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of Computational & Theoretical Sciences, Faculty of ScienceInternational Islamic University MalaysiaKuantan, PahangMalaysia
  2. 2.Institute of MathematicsTashkentUzbekistan

Personalised recommendations