Abstract
In this article we give necessary and sufficient conditions for the boundedness of the weighted Hardy-Cesà ro operators which is associated to the parameter curve γ(t, x) = γ(t)x defined by \({U_{\psi ,\gamma }}f\left( x \right) = \int {\left( {\gamma \left( t \right)x} \right)} \psi \left( t \right)dt\) on the weighted Morrey-Herz space over the p-adic field. Especially, the corresponding operator norms are established in each case. These results actually extend those of K. S. Rim and J. Lee [27] and of the authors [9]. Moreover, the sufficient conditions of boundedness of commutators of p-adic weighted Hardy-Cesàro operator with symbols in the Lipschitz space on the weighted Morrey-Herz space are also established.
This is a preview of subscription content, access via your institution.
References
S. Albeverio and W. Karwowski, “A randomwalk on p-adics: the generator and its spectrum,” Stoch. Process. Appl. 53, 1–22 (1994).
S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-wavelets, Tauberian theorems,” J. Fourier Anal. Appl. 12 (4), 393–425 (2006).
A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A:Math. Gen. 35, 177–189 (2002).
A. V. Avetisov, A. H. Bikulov and V. A. Osipov, “p-Adic description of characteristic relaxation in complex systems,” J. Phys. A:Math. Gen. 36, 4239–4246 (2003).
K. F. Andersen and B. Muckenhoupt, “Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions,” Studia Math. 72 (1), 9–26 (1982).
C. Carton-Lebrun and M. Fosset, “Moyennes et quotients de Taylor dans BMO,” Bull. Soc. Roy. Sci. Lié ge 53 (2), 85–87 (1994).
R. R. Coifman, R. Rochberg and G. Weiss, “Factorization theorems for Hardy spaces in several variables,” Ann.Math. 103, 611–635 (1976).
N. M. Chuong, Yu. V. Egorov, A. Yu. Khrennikov, Y. Meyer and D. Mumford, eds., Harmonic, Wavelet and p-Adic Analysis (World Scientific, 2007).
N. M. Chuong and D. V. Duong, “Weighted Hardy-Littlewood operators and commutators on p-adic functional spaces,” p-Adic Numbers Ultrametric Anal. Appl. 5 (1), 65–82 (2013).
N. M. Chuong and D. V. Duong, “Wavelet bases in the Lebesgue spaces on the field of p-adic numbers,” p-Adic Numbers Ultrametric Anal. Appl. 5 (2), 106–121 (2013).
N. M. Chuong and N. V. Co, “The Cauchy problem for a class of pseudo-differential equations over p-adic field,” J. Math. Anal. Appl. 340 (1), 629–643 (2008).
H. D.Hung, “The p-adic weightedHardy-Cesà ro operator and an application to discreteHardy inequalities,” J. Math. Anal. Appl. 409, 868–879 (2014).
M. Christ and L. Grafakos, “Best constants for two non-convolution inequalities,” Proc. Amer. Math. Soc. 123, 1687–1693 (1995).
D. E. Edmunds and W. D. Evans, Hardy Operators, Function Spaces and Embeddings (Springer-Verlag, Berlin, 2004).
W. Faris, “Weak Lebesgue spaces and quantum mechanical binding,” Duke Math. J. 43, 365–373 (1976).
S. Haran, “Riesz potentials and explicit sums in arithmetic,” Invent Math. 101, 697–703 (1990).
S. Haran, “Analytic potential theory over the p-adics,” Ann. Inst. Fourier (Grenoble) 43 (4), 905–944 (1993).
G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, second ed. (Cambridge Univ. Press, London, 1952).
A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht-Boston-London, 1994).
A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic refinable functions and MRA-based wavelets,” J. Approx. Theory 161, 226–238 (2009).
S. V. Kozyrev, “Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics,” Proc. Steklov Inst.Math. 274, 1–84 (2011).
Z. W. Fu, Z. G. Liu and S. Z. Lu, “Commutators of weighted Hardy operators,” Proc. Amer. Math. Soc. 137, 3319–3328 (2009).
M. T. Lacey, “Commutators with Riesz potentials in one and several parameters,” Hokkaido Math. J. 36, 175–191 (2007).
C. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc. 43, 126–166 (1938).
M. Paluszynski, “Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg andWeiss,” Indiana Univ. Math. J. 44, 1–17 (1995).
C. Perez, “Endpoints for commutators of singular integral operators,” J. Funct. Anal. 128, 163–185 (1995).
K. S. Rim and J. Lee, “Estimates of weighted Hardy-Littlewood averages on the p-adic vector space,” J. Math. Anal. Appl. 324 (2), 1470–1477 (2006).
C. Tang, F. Xue and Y. Zhou, “Commutators of weighted Hardy operators on Herz-type spaces,” Annales Polonici Mathematici 101.3, 267–273 (2011).
M. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, 1975).
V. S. Varadarajan, “Path integrals for a class of p-adic Schro¨ dinger equations,” Lett.Math. Phys. 39, 97–106 (1997).
V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Comm. Math. Phys. 123, 659–676 (1989).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physis (World Scientific, 1994).
S. S. Volosivets, “Multidimensional Hausdorff operator on p-adic field,” p-Adic Numbers Ultrametric Anal. Appl. 2, 252–259 (2010).
S. S. Volosivets, “Hausdorff operator of special kind on p-adic field and BMO-type spaces,” p-Adic Numbers Ultrametric Anal. Appl. 3, 149–156 (2011).
S. S. Volosivets, “Hausdorff operator of special kind in Morrey and Herz p-adic spaces,” p-Adic Numbers Ultrametric Anal. Appl. 4, 222–230 (2012).
J. Xiao, “Lp and BMO bounds of weighted Hardy-Littlewood averages,” J. Math. Anal. Appl. 262, 660–666 (2001).
Author information
Authors and Affiliations
Corresponding author
Additional information
The text was submitted by the authors in English.
Rights and permissions
About this article
Cite this article
Chuong, N.M., Duong, D.V. The p-adic weighted Hardy-Cesàro operators on weighted Morrey-Herz space. P-Adic Num Ultrametr Anal Appl 8, 204–216 (2016). https://doi.org/10.1134/S207004661603002X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S207004661603002X
Keywords
- Weighted Hardy-Cesàro operator
- commutator
- weighted Morrey-Herz space
- p-adic analysis