The p-adic weighted Hardy-Cesàro operators on weighted Morrey-Herz space

  • N. M. ChuongEmail author
  • D. V. Duong
Research Articles


In this article we give necessary and sufficient conditions for the boundedness of the weighted Hardy-Cesà ro operators which is associated to the parameter curve γ(t, x) = γ(t)x defined by \({U_{\psi ,\gamma }}f\left( x \right) = \int {\left( {\gamma \left( t \right)x} \right)} \psi \left( t \right)dt\) on the weighted Morrey-Herz space over the p-adic field. Especially, the corresponding operator norms are established in each case. These results actually extend those of K. S. Rim and J. Lee [27] and of the authors [9]. Moreover, the sufficient conditions of boundedness of commutators of p-adic weighted Hardy-Cesàro operator with symbols in the Lipschitz space on the weighted Morrey-Herz space are also established.


Weighted Hardy-Cesàro operator commutator weighted Morrey-Herz space p-adic analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio and W. Karwowski, “A randomwalk on p-adics: the generator and its spectrum,” Stoch. Process. Appl. 53, 1–22 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    S. Albeverio, A. Yu. Khrennikov and V. M. Shelkovich, “Harmonic analysis in the p-adic Lizorkin spaces: fractional operators, pseudo-differential equations, p-wavelets, Tauberian theorems,” J. Fourier Anal. Appl. 12 (4), 393–425 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A:Math. Gen. 35, 177–189 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    A. V. Avetisov, A. H. Bikulov and V. A. Osipov, “p-Adic description of characteristic relaxation in complex systems,” J. Phys. A:Math. Gen. 36, 4239–4246 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K. F. Andersen and B. Muckenhoupt, “Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions,” Studia Math. 72 (1), 9–26 (1982).MathSciNetzbMATHGoogle Scholar
  6. 6.
    C. Carton-Lebrun and M. Fosset, “Moyennes et quotients de Taylor dans BMO,” Bull. Soc. Roy. Sci. Lié ge 53 (2), 85–87 (1994).MathSciNetzbMATHGoogle Scholar
  7. 7.
    R. R. Coifman, R. Rochberg and G. Weiss, “Factorization theorems for Hardy spaces in several variables,” Ann.Math. 103, 611–635 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    N. M. Chuong, Yu. V. Egorov, A. Yu. Khrennikov, Y. Meyer and D. Mumford, eds., Harmonic, Wavelet and p-Adic Analysis (World Scientific, 2007).Google Scholar
  9. 9.
    N. M. Chuong and D. V. Duong, “Weighted Hardy-Littlewood operators and commutators on p-adic functional spaces,” p-Adic Numbers Ultrametric Anal. Appl. 5 (1), 65–82 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. M. Chuong and D. V. Duong, “Wavelet bases in the Lebesgue spaces on the field of p-adic numbers,” p-Adic Numbers Ultrametric Anal. Appl. 5 (2), 106–121 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    N. M. Chuong and N. V. Co, “The Cauchy problem for a class of pseudo-differential equations over p-adic field,” J. Math. Anal. Appl. 340 (1), 629–643 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H. D.Hung, “The p-adic weightedHardy-Cesà ro operator and an application to discreteHardy inequalities,” J. Math. Anal. Appl. 409, 868–879 (2014).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Christ and L. Grafakos, “Best constants for two non-convolution inequalities,” Proc. Amer. Math. Soc. 123, 1687–1693 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D. E. Edmunds and W. D. Evans, Hardy Operators, Function Spaces and Embeddings (Springer-Verlag, Berlin, 2004).CrossRefzbMATHGoogle Scholar
  15. 15.
    W. Faris, “Weak Lebesgue spaces and quantum mechanical binding,” Duke Math. J. 43, 365–373 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Haran, “Riesz potentials and explicit sums in arithmetic,” Invent Math. 101, 697–703 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. Haran, “Analytic potential theory over the p-adics,” Ann. Inst. Fourier (Grenoble) 43 (4), 905–944 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, second ed. (Cambridge Univ. Press, London, 1952).zbMATHGoogle Scholar
  19. 19.
    A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht-Boston-London, 1994).CrossRefzbMATHGoogle Scholar
  20. 20.
    A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic refinable functions and MRA-based wavelets,” J. Approx. Theory 161, 226–238 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    S. V. Kozyrev, “Methods and applications of ultrametric and p-adic analysis: from wavelet theory to biophysics,” Proc. Steklov Inst.Math. 274, 1–84 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Z. W. Fu, Z. G. Liu and S. Z. Lu, “Commutators of weighted Hardy operators,” Proc. Amer. Math. Soc. 137, 3319–3328 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. T. Lacey, “Commutators with Riesz potentials in one and several parameters,” Hokkaido Math. J. 36, 175–191 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    C. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc. 43, 126–166 (1938).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    M. Paluszynski, “Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg andWeiss,” Indiana Univ. Math. J. 44, 1–17 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    C. Perez, “Endpoints for commutators of singular integral operators,” J. Funct. Anal. 128, 163–185 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    K. S. Rim and J. Lee, “Estimates of weighted Hardy-Littlewood averages on the p-adic vector space,” J. Math. Anal. Appl. 324 (2), 1470–1477 (2006).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    C. Tang, F. Xue and Y. Zhou, “Commutators of weighted Hardy operators on Herz-type spaces,” Annales Polonici Mathematici 101.3, 267–273 (2011).Google Scholar
  29. 29.
    M. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, 1975).zbMATHGoogle Scholar
  30. 30.
    V. S. Varadarajan, “Path integrals for a class of p-adic Schro¨ dinger equations,” Lett.Math. Phys. 39, 97–106 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    V. S. Vladimirov and I. V. Volovich, “p-Adic quantum mechanics,” Comm. Math. Phys. 123, 659–676 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physis (World Scientific, 1994).CrossRefzbMATHGoogle Scholar
  33. 33.
    S. S. Volosivets, “Multidimensional Hausdorff operator on p-adic field,” p-Adic Numbers Ultrametric Anal. Appl. 2, 252–259 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    S. S. Volosivets, “Hausdorff operator of special kind on p-adic field and BMO-type spaces,” p-Adic Numbers Ultrametric Anal. Appl. 3, 149–156 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S. S. Volosivets, “Hausdorff operator of special kind in Morrey and Herz p-adic spaces,” p-Adic Numbers Ultrametric Anal. Appl. 4, 222–230 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    J. Xiao, “Lp and BMO bounds of weighted Hardy-Littlewood averages,” J. Math. Anal. Appl. 262, 660–666 (2001).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of MathematicsVietnamese Academy of Science and TechnologyHanoiVietnam
  2. 2.Department of Basic SciencesMientrung University of Civil EngineeringTuy Hoa City, Phu YenVietnam

Personalised recommendations