Advertisement

p-Adic probability logics

  • A. Ilić StepićEmail author
  • Z. Ognjanović
  • N. Ikodinović
  • A. Perović
Review Articles

Abstract

This paper represents an comprehensive overview of the results from three papers where we developed several propositional logics for reasoning about p-adic valued probability.Each of these logics is a sound, complete and decidable extension of classical propositional logic.

Keywords

p-adic probability logic conditional probability p-adic distances coding information 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Robert, A Course in p-Adic Analysis (Springer, 2000).CrossRefzbMATHGoogle Scholar
  2. 2.
    S. Albeverio and A. Yu. Khrennikov, “Representation of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions,” J. Phys. A 29, 5515–5527 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Albeverio, R. Cianci and A. Yu. Khrennikov, “A representation of quantum field Hamiltonians in a p-adic Hilbert space,” Theor. Math. Phys. 112 (3), 355–374 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Albeverio, A. Yu. Khrennikov and P. E. Kloeden, “Memory retieval as p-adic dynamical system,” BioSystems 49, 105–115 (1999).CrossRefGoogle Scholar
  5. 5.
    I. Ya. Aref’eva, B. Dragovich, P. H. Frampton and I. V. Volovich, “The vave function of the Universe and p-adic gravity,” Int. J. Mod. Phys. A 6 (24), 4341–4358 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    B. Dragovich and A. Dragovich, “p-Adic modeling of the genome and the genetic code,” Computer J. 53 (4), 432–442 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    G. Bachman, “Introduction to p-adic numbers and valuation theory,” Polytechnic Institute of Brooklyn, Mathematics Department, Brooklyn, New-York.Google Scholar
  8. 8.
    A. J. Baker, An Introduction to p-Adic Numbers and p-Adic Analysis Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland.Google Scholar
  9. 9.
    N. De Grande-De Kimpe and A. Yu. Khrennikov, “Non-Arcimedian Laplace transform,” Bull. BelgianMath. Soc. 3, 225–237 (1996).zbMATHGoogle Scholar
  10. 10.
    R. Fagin, J. Halpern and N. Megiddo, “A logic for reasoning about probabilities,” Inform. Comp. 87 (1-2), 78–128 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Q. Gouvea, p-Adic Numbers: An Introduction, 2nd ed. (Springer, 2000).zbMATHGoogle Scholar
  12. 12.
    N. Ikodinović and Z. Ognjanović, “A Logic with coherent conditional probabilities,” in Symbolic and Quantitative Approaches to Reasoningwith Uncertainty, Lect.Notes Comp. Sci. 3571, 726–736 (2005).CrossRefzbMATHGoogle Scholar
  13. 13.
    N. Ikodinović, M. Rašković, Z. Marković and Z. Ognjanović, “Measure logic,” Lect. Notes Comp. Sci. (LNCS/LNAI) 4724, 128–138 (2007).CrossRefzbMATHGoogle Scholar
  14. 14.
    N. Ikodinović, M. Rašković, Z. Marković and Z. Ognjanović, “Logics with generalized measure operators,” J. Multiple-Valued Logic Soft Comp. 20 (5-6), 527–555 (2013).MathSciNetzbMATHGoogle Scholar
  15. 15.
    A. Ilić Stepić, Z. Ognjanović, N. Ikodinović and A. Perović, “A p-adic probability logic,” Math. Logic Quar. 58 (4-5), 263–280 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Ilić Stepić, Z. Ognjanović and N. Ikodinović, “Conditional p-adic probability logic,” Int. J. Approx. Reas. 55 (9), 1843–1865 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Ilić Stepić and Z. Ognjanović, “Logics for reasoning about processes of thinking with information coded by p-adic numbers,” Studia Log. 103, 145–174 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. Ilić Stepić, “A logic for reasoning about qualitative probability,” Publ. L’Inst. Math. N. S. 87, 97–108 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. M. Keynes, Treatise on Probability (MacMillan and Co., London, 1921).zbMATHGoogle Scholar
  20. 20.
    A. Khrennikov, “Toward theory of p-adic valued probabilities,” Stud. Logic Gram. Rhet. 14 (27), 137–154 (2008).MathSciNetGoogle Scholar
  21. 21.
    A. Khrennikov, “Human subconscious as a p-adic dynamical system,” J. Theor. Biol. 193, 179–196 (1998).CrossRefGoogle Scholar
  22. 22.
    A. Yu. Khrennikov, “p-Adic discrete dynamical systems and collective behaviour of information states in cognitive models,” Disc. Dyn. Nat. Soc. 5, 59–69 (2000).CrossRefzbMATHGoogle Scholar
  23. 23.
    A. Yu. Khrennikov, p-Adic Valued Distibutions inMathematical Physics (Kluwer Acad. Publ., Dordrecht, 1994).CrossRefGoogle Scholar
  24. 24.
    A. Yu. Khrennikov, Interpretations of Probability (Walter de Gruyter, Berlin, 2009).CrossRefzbMATHGoogle Scholar
  25. 25.
    A. Yu. Khrennikov, “Mathematical methods of the Non-Arcimedean physics,” Uspekhi Mat. Nauk 45 (4), 79–110 (1990).MathSciNetGoogle Scholar
  26. 26.
    A. Yu. Khrennikov, Non-Arcimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publ., Dordrecht, 1997).CrossRefzbMATHGoogle Scholar
  27. 27.
    A. Yu. Khrennikov, “p-Adic quantum mehanics with p-adic valued functions,” J. Math. Phys. 32 (4), 932–937 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. Khrennikov, “Toward theory of p-adic valued probabilities,” Stud. Logic Gram. Rhet. 14 (27), 137–154 (2008).MathSciNetGoogle Scholar
  29. 29.
    A. Yu. Khrennikov, “p-Adic probability interpretation of Bell’s inequality,” Phys. Lett. A 200 (3-4), 219–223 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    N. Koblitz, p-Adic Numbers, p-Adic Analysis and Zeta-Functions (Springer-Verlag, New-York, Berlin, Heidelberg, Tokyo, 1984).CrossRefzbMATHGoogle Scholar
  31. 31.
    Z. Marković, Z. Ognjanović and M. Rašković, “A probabilistic extension of intuitionistic logic,” Math. Log. Quar. 49 (4), 415–424 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    M. Milošević and Z. Ognjanović, “A first-order conditional probability logic,” Logic J. IGPL 20 (1), 235–253 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    M. Milošević and Z. Ognjanović, “A first-order conditional probability logic with iterations,” Publ. L’Inst. Math. N. S. 93 (107), 19–27 (2013).MathSciNetzbMATHGoogle Scholar
  34. 34.
    N. Nilsson, “Probabilistic logic,” Art. Intel. 28, 71–87 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Z. Ognjanović, A. Perović and M. Rašković, “Logic with the qualitative probability operator,” Logic J. IGPL 16 (2), 105–120 (2008).CrossRefzbMATHGoogle Scholar
  36. 36.
    Z. Ognjanović, M. Rašković and Z. Marković, “Probability logics,” Zbornik Radova, Subseries Logic Comp. Sci. 12 (20), 35–111 (2009).MathSciNetzbMATHGoogle Scholar
  37. 37.
    Z. Ognjanović and M. Rašković, “Some probability logic with new types of probability operators,” J. Log. Comp. 9 (2), 181–195 (1999).CrossRefzbMATHGoogle Scholar
  38. 38.
    Z. Ognjanović and N. Ikodinović, “A logic with higher order conditional probabilities,” Publ. L’Inst. Math. N. S. 82, 141–154 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Z. Ognjanović and M. Rašković, “Some first-order probability logics,” Theor. Comp. Sci. 247, 191–212 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    M. Rašković, Z. Marković and Z. Ognjanović, “A logic with approximate conditional probabilities that can model default reasoning,” Int. J. Appr. Reas. 49, 52–66 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Z. Ognjanović, Z. Marković and M. Rašsković, “Completeness theorem for a logic with imprecise and conditional probabilities,” Publ. L’Inst. Math. N. S. 78 (92), 35–49 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    M. Rašković, “Classical logic with some probability operators,” Publ. L’Inst. Math. N. S. 53 (67), 1–3 (1993).MathSciNetzbMATHGoogle Scholar
  43. 43.
    Z. Ognjanović, M. Rašković and Z. Marković, “Probability logics,” Zbornik Radova, Subseries Logic Comp. Sci. 12 (20), 35–111 (2009).MathSciNetzbMATHGoogle Scholar
  44. 44.
    R. Djordjervić, M. Rašković and Z. Ognjanović, “Completeness theorem for propositional probabilistic models whose measures have only finite ranges,” Arch.Math. Log. 43, 557–563 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    M. Milošević and Zoran Ognjanović, “A first-order conditional probability logic,” Logic J. IGPL 20 (1), 235–253 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, “The spectral theory in the p-adic quantum mehanics,” Izv. Akad. Nauk. SSSR, Ser.Mat. 54 (2), 275–302 (1990).MathSciNetzbMATHGoogle Scholar
  47. 47.
    A. Khrennikov and A. Kozyrev, “2-Adic clustering of the PAMmatrix,” J. Theor. Biol. 261, 396–406 (2009).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. Ilić Stepić
    • 1
    Email author
  • Z. Ognjanović
    • 1
  • N. Ikodinović
    • 2
  • A. Perović
    • 3
  1. 1.Mathematical Institute of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia
  3. 3.Faculty of Transportation and Traffic EngineeringUniversity of BelgradeBelgradeSerbia

Personalised recommendations