Abstract
In this paper we aim to investigate the boundedness of the p-adic weighted Hardy-Cesàro operators and their commutators on weighted functional spaces of Morrey type. In each case, we obtain the corresponding operator norms.
This is a preview of subscription content, access via your institution.
References
D. R. Adams, “A note on Riesz potentials,” Duke Math. J. 42, 765–778 (1975).
J. Alvarez, J. Lakey and M. Guzmán-Partida, “Spaces of bounded λ-centralmean oscillation,Morrey spaces, and λ-central Carleson measures,” Collect.Math. 51, 1–47 (2000).
C. Carton-Lebrun and M. Fosset, “Moyennes et quotients de Taylor dans BMO,” Bull. Soc. Roy. Sci. Liége 53 (2), 85–87 (1984).
Y. Z. Chen and K. S. Lau, “Some new classes of Hardy spaces,” J. Funct. Anal. 84, 255–278 (1989).
F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function,” Rend. Math. Appl. 7, 273–279 (1987).
N. M. Chuong, P. G. Ciarlet, P. Lax, D. Mumford and D. H. Phong, Advances in Deterministic and Stochastic Analysis (World Scientific, 2007).
N. M. Chuong and D. V Duong, “Weighted Hardy-Littlewood operators and commutators on p-adic functional spaces,” p-Adic Numbers Ultrametric Anal. Appl. 5, 65–82 (2013).
N. M. Chuong, Yu. V. Egorov, A. Khrennikov, Y. Meyer and D. Mumford, Harmonic, Wavelet and p-Adic Analysis (World Scientific, 2007).
N. M. Chuong and H. D. Hung, “Maximal functions and weighted norm inequalities on local fields,” Appl. Comput. Harmon. Anal. 29, 272–286 (2010).
N. M. Chuong and H. D. Hung, “A Muckenhoupt’s weight problem and vector valued maximal inequalities over local fields,” p-Adic Numbers Ultrametric Anal. Appl. 2, 305–321 (2010).
N. M. Chuong and H. D. Hung, “Weighted Lp and weighted BMO-bounds for a new generalized weighted Hardy-Cesàro operator,” Integral Transf. Spec. Funct. 25 (9), 697–710 (2014).
R. R. Coifman, R. Rochberg and G. Weiss, “Factorization theorems for Hardy spaces in several variables,” Ann. Math. 103 (2), 611–635 (1976).
B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adic mathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1 (1), 1–17 (2009).
Z. W. Fu, Z. G. Liu and S. Z. Lu, “Commutators of weighted Hardy operators on Rn,” Proc. Amer. Math. Soc. 137 (10), 3319–3328 (2009).
J. García-Cuerva, “Hardy spaces and Beurling algebras,” J. London Math. Soc. 39 (2), 499–513 (1989).
G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, 2nd ed. (Cambridge Univ. Press, Cambridge, 1952).
H. D. Hung, “p-Adic weighted Hardy-Cesàro operator and an application to discrete Hardy inequalities,” J. Math. Anal. Appl. 409, 868–879 (2014).
Y. C. Kim, “Carleson measures and the BMO space on the p-adic vector space,” Math. Nachr. 282, 1278–1304 (2009).
A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems, and Biological Models (Kluwer Acad. Publishers, Dordretch-Boston-London, 1997).
A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht-Boston-London, 1994).
Y. Komori and S. Shirai, “Weighted Morrey spaces and a singular integral operator,” Math. Nachr. 282 (2), 219–231 (2009).
S. V. Kozyrev and A. Yu. Khrennikov, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izv. Ross. Akad. Nauk Ser.Mat. 69 (5), 133–148 (2005).
F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math. 14, 415–426 (1961).
B. Muckenhoupt and R. Wheeden, “Weighted bounded mean oscillation and the Hilbert transform,” Studia Math. 54 (3), 221–237 (1975/1976).
S. Z. Lu and D. C. Yang, “The central BMO spaces and Littlewood-Paley operators,” Approx. Theory Appl. 11, 72–94 (1995).
C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations,” Trans. Amer. Math. Soc. 43, 126–166 (1938).
K. S. Rim and J. Lee, “Estimates of weighted Hardy-Littlewood averages on the p-adic vector space,” J. Math. Anal. Appl. 324, 1470–1477 (2006).
M. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, Princeton, 1975).
V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, 1994).
S. S. Volosivets, “Hausdorff operator of special kind on p-adic field andBMO-type spaces,” p-AdicNumbers Ultrametric Anal. Appl. 3, 149–156 (2011).
S. S. Volosivets, “Hausdorff operator of special kind in Morrey and Herz p-adic spaces,” p-Adic Numbers Ultrametric Anal. Appl. 4, 222–230 (2012).
J. Xiao, “L p and BMObounds of weighted Hardy-Littlewood averages,” J. Math. Anal. Appl. 262, 660–666 (2001).
W. Yuan, W. Sickel and D. Yang, Morrey and Campanato Meet Besov, Lizorkin and Triebel, Lecture Notes inMath. 2005 (Springer, Berlin, 2010).
Q. Y. Wu, “Boundedness for commutators of fractional p-adic Hardy operators,” J. Ineq. Appl. 2012, 293 (2012).
Q. Y. Wu and Z. W. Fu, “Weighted p-adic Hardy operators and their commutators on p-adic central Morrey spaces,” to appear in Bull. Malays. Math. Sci. Soc. (2015).
Q. Y. Wu, L. Mi and Z. W. Fu, “Boundedness of p-adic Hardy operattors and their commutators on p-adic centralMorrey and BMO spaces,” J. Funct. Spaces Appl. 2013, 359193, 10 pages (2013).
Author information
Authors and Affiliations
Corresponding author
Additional information
The text was submitted by the authors in English.
Rights and permissions
About this article
Cite this article
Chuong, N.M., Hung, H.D. & Hong, N.T. Bounds of p-adic weighted Hardy-Cesàro operators and their commutators on p-adic weighted spaces of Morrey types. P-Adic Num Ultrametr Anal Appl 8, 31–44 (2016). https://doi.org/10.1134/S2070046616010039
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2070046616010039
Key words
- weighted Hardy-Cesàro operator
- BMO
- commutator
- p-adic analysis