Skip to main content
Log in

On finite-temperature string field theory and p-adic string

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

Covariant string field theory at finite temperature using quantum double (thermofield dynamics) formalism is considered. Thermal p-adic string theory amplitudes and a natural generalization of p-adic string effective action to the case on non-zero temperature are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. S. Schwinger, “Brownian motion of a quantum oscillator,” J.Math. Phys. 2, 407 (1961).

    Article  MATH  MathSciNet  Google Scholar 

  2. L. V. Keldysh, “Diagram technique for nonequilibrium processes,” Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].

    Google Scholar 

  3. D. A. Kirzhnits and A. D. Linde, “Macroscopic consequences of the Weinberg model,” Phys. Lett. B 42, 471 (1972); D. A. Kirzhnits and A. D. Linde, “Symmetry behavior in gauge theories,” Annals Phys. 101, 195 (1976); A. D. Linde, “Phase Transitions in gauge theories and cosmology,” Rept. Prog. Phys. 42, 389 (1979).

    Article  Google Scholar 

  4. L. Dolan and R. Jackiw, “Symmetry behavior at finite temperature,” Phys. Rev. D 9, 3320 (1974); S. Weinberg, “Gauge and global symmetries at high temperature,” Phys. Rev. D 9, 3357 (1974).

    Article  Google Scholar 

  5. A. G. Cohen, D. B. Kaplan and A. E. Nelson, “Progress in electroweak baryogenesis,” Ann. Rev. Nucl. Part. Sci. 43, 27 (1993) [hep-ph/9302210].

    Article  Google Scholar 

  6. D. J. Gross, R. D. Pisarski and L. G. Yaffe, “QCD and instantons at finite temperature,” Rev. Mod. Phys. 53, 43 (1981); N. Weiss, “The effective potential for the order parameter of gauge theories at finite temperature,” Phys. Rev. D 24, 475 (1981); N. Weiss, “The Wilson line in finite temperature gauge theories,” Phys. Rev. D 25, 2667 (1982).

  7. I. Y. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp. 57, 527 (2014).

    Article  Google Scholar 

  8. M. J. Bowick and L. C. R. Wijewardhana, “Superstrings at high temperature,” Phys. Rev. Lett. 54, 2485 (1985); P. Salomonson and B. S. Skagerstam, “On superdense superstring gases: a heretic string model approach,” Nucl. Phys. B 268, 349 (1986); S. H. H. Tye, “The limiting temperature Universe and superstring,” Phys. Lett. B 158, 388 (1985).

    Article  Google Scholar 

  9. E. Alvarez, “Superstring cosmology,” Phys. Rev. D 31, 418 (1985) [Erratum-ibid. D 33, 1206 (1986)]; E. Alvarez, “Strings at finite temperature,” Nucl. Phys. B 269, 596 (1986).

    Article  MathSciNet  Google Scholar 

  10. R. Brandenberger and C. Vafa, HUTP-88/A035, (1988) (unpublished); J. Kripfganz and H. Perlt, Class. Quant. Grav. 5, 453 (1988).

    Google Scholar 

  11. Y. Leblanc, “String field theory at finite temperature,” Phys. Rev. D 36, 1780 (1987).

    Article  MathSciNet  Google Scholar 

  12. Y. Leblanc, “Finite temperature amplitudes in open string systems,” Phys. Rev. D 37, 1547 (1988).

    Article  Google Scholar 

  13. Y. Leblanc, “Improved integral representation for the finite-temperature propagator in string theory,” Phys. Rev. D 39, 1139 (1989).

    Article  MathSciNet  Google Scholar 

  14. E. Ahmed, “Interacting superstrings at finite temperature,” Phys. Rev. Lett. 60, 684 (1988).

    Article  MathSciNet  Google Scholar 

  15. R. Fujisaki, K. Nakaga and I. Shirai, “Comments on the thermal Virasoro algebra,” Prog. Theor. Phys. 81(3), March (1989).

    Google Scholar 

  16. H. Fujisaki and K. Nakagawa, “One loop thermal tachyon selfenergy,” Europhys. Lett. 28, 471 (1994).

    Article  MathSciNet  Google Scholar 

  17. M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, “Bosonic D-branes at finite temperature with an external field,” Phys. Rev. D 64, 086005 (2001) [hep-th/0104068]; M. C. B. Abdalla, A. L. Gadelha and I. V. Vancea, “D-branes at finite temperature in TFD,” hep-th/0308114 (2003).

    Article  MathSciNet  Google Scholar 

  18. E. Witten, “Noncommutative geometry and string field theory,” Nucl. Phys. B 268, 253 (1986).

    Article  MathSciNet  Google Scholar 

  19. I. Ya. Arefeva, D. M. Belov, A. A. Giryavets, A. S. Koshelev and P. B. Medvedev, “Noncommutative field theories and (super)string field theories,” hep-th/0111208 (2001).

    Google Scholar 

  20. T. Biswas, J. Kapusta and A. Reddy, “Thermodynamics of string field theory motivated nonlocal models,” JHEP 1212, 008 (2012) [arXiv:1201.1580 [hep-th]].

    Article  MathSciNet  Google Scholar 

  21. I. V. Volovich, “p-Adic string,” Class. Quant. Grav. 4, L83 (1987); I. V. Volovich, “Number theory as the ultimate physical theory,” p-Adic Numbers Ultrametric Anal. Appl. 2 (1), 77 (2010).

    Article  MathSciNet  Google Scholar 

  22. L. Brekke, P. G. O. Freund, M. Olson and E. Witten, “Nonarchimedean string dynamics,” Nucl. Phys. B 302, 365 (1988).

    Article  MathSciNet  Google Scholar 

  23. P. H. Frampton and Y. Okada, “Effective scalar field theory of p-adic string,” Phys. Rev. D 37, 3077 (1988).

    Article  MathSciNet  Google Scholar 

  24. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Singapore, World Scientific, 1994).

    Book  Google Scholar 

  25. B. Dragovich, A. Yu.’ Khrennikov, S.V. Kozyrev and I.V. Volovich, “On p-adicmathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1(1), 1 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  26. I. Ya. Aref’eva, “Nonlocal string tachyon as a model for cosmological dark energy,” AIP Conf. Proc. 826, 301 (2006) [astro-ph/0410443].

    Article  MathSciNet  Google Scholar 

  27. I. Ya. Aref’eva, “Stringy model of cosmological dark energy,” AIP Conf. Proc. 957, 297 (2007) [arXiv:0710.3017 [hep-th]].

    Article  MathSciNet  Google Scholar 

  28. B. Dragovich, “Towards p-adic matter in the Universe,” arXiv:1205.4409 [hep-th] (2012).

    Google Scholar 

  29. Y. Takahashi and H. Umezawa, Collect. Phenom. 2, 55 (1975); Y. Takahashi and H. Umezawa, “Thermo field dynamics,” Int. J. Mod. Phys. B 10, 1755 (1996); H. Matsumoto, I. Ojima and H. Umezawa, “Perturbation and renormalization in thermo field dynamics,” Annals Phys. 152, 348 (1984); H. Umezawa, H.Matsumoto and M. Tachiki, Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam, 1982).

    MathSciNet  Google Scholar 

  30. S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP 1403, 067 (2014) [arXiv:1306.0622 [hep-th]].

    Article  MathSciNet  Google Scholar 

  31. J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 0304, 021 (2003) [hep-th/0106112].

    Article  MathSciNet  Google Scholar 

  32. L. Accardi, Yun Gang Lu and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, 2002).

    Book  MATH  Google Scholar 

  33. I. Ojima, “Gauge fields at finite temperatures: thermo field dynamics, KMS condition and their extension to gauge theories,” Annals Phys. 137, 1 (1981).

    Article  MathSciNet  Google Scholar 

  34. H. Matsumoto, Y. Nakano, H. Umezawa, F. Mancini and M. Marinaro, Prog. Theor. Phys. 70, 599 (1983), H. Matsumoto, Y. Nakano and H. Umezawa, J.Math. Phys. 25, 3076 (1984).

    Article  Google Scholar 

  35. T. Biswas, J. A. R. Cembranos and J. I. Kapusta, “Thermodynamics and cosmological constant of nonlocal field theories from p-adic strings,” JHEP 10, 048 (2010), [arXiv:hep-th/1005.0430 (2010)]; T. Biswas, J. A. R. Cembranos and J. I. Kapusta, “Thermal duality and Hagedorn transition from p-adic strings,” Phys. Rev. Lett. 104, 021601 (2010) [arXiv:0910.2274 [hep-th]].

    MathSciNet  Google Scholar 

  36. J. J. Atick and E. Witten, “The Hagedorn transition and the number of degrees of freedom of string theory,” Nucl. Phys. B 310, 291 (1988).

    Article  MathSciNet  Google Scholar 

  37. A. Sen, “Stable non BPS bound states of BPS D-branes,” JHEP 9808, 010 (1998) [hep-th/9805019].

    Article  Google Scholar 

  38. M. Schnabl, “Analytic solution for tachyon condensation in open string field theory,” Adv. Theor. Math. Phys. 10, 433 (2006) [hep-th/0511286].

    Article  MATH  MathSciNet  Google Scholar 

  39. I.Ya. Aref’eva, R.V. Gorbachev and P. B. Medvedev, “Tachyon solution in a cubic Neveu-Schwarz string field theory,” Theor. Math. Phys. 158, 320 (2009).

    Article  MathSciNet  Google Scholar 

  40. I. Ya. Arefeva, “String field theory: From high energy to cosmology,” Theor. Math. Phys. 163, 697 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ya. Aref’eva.

Additional information

The text was submitted by the author in English. Based on invited talk at International Conference on “String Field Theory and Related Topics,” SISSA, Italy, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I.Y. On finite-temperature string field theory and p-adic string. P-Adic Num Ultrametr Anal Appl 7, 111–120 (2015). https://doi.org/10.1134/S207004661502003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207004661502003X

Key words

Navigation