Skip to main content
Log in

Foundations of analysis on superspace — 1: Differential calculus

  • Review Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

The recent experimental confirmation of the existence of Higgs boson stimulates theoretical research on supersymmetric models; in particular, mathematics of such modeling. Therefore we plan to present essentials of one special approach to “super-mathematics”, so called functional superanalysis (in the spirit of De Witt, Rogers, Vladimirov and Volovich, and the author of this review) in compact and clear form in series of review-type papers. This first paper is a review on super-differential calculus for the concrete model of the superspace (invented by Vladimirov and Volovich). In the next review we plan to present the integral supercalculus. The main distinguishing feature of functional superanalysis is that this is a real super-extension of analysis of Newton and Leibniz, opposite to algebraic models of Martin and Berezin. Here functions of commuting and anticommuting variables are no simply algebraic elements belonging to Grassmann algebras, but point-wise maps, from superspace into superspace. Finally, we remark that the first non-Archimedean physical model was based on invention by Vladimirov and Volovich of superspaces based on supercommutative Banach superalgebras over non-Archimedean (in particular, p-adic) fields. This model plays the basic role in theory of p-adic superstrings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Vladimirov and I. V. Volovich, “Superanalysis I. Differential calculus,” Teor. Mat. Fiz. 59, 3–27 (1984).

    Article  MathSciNet  Google Scholar 

  2. V. S. Vladimirov and I.V. Volovich, “Superanalysis II. Integral calculus,” Teor. Mat. Fiz. 60, 169–198 (1984).

    Article  MathSciNet  Google Scholar 

  3. S. Albeverio, R. Cianci and A. Yu. Khrennikov, “p-Adic valued quantization,” p-Adic Numbers Ultrametric Anal. Appl. 1N(2), 91–104 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adicmathematical physics,” p-Adic Numbers Ultrametric Anal. Appl. 1(1), 1–17 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Dragovich, “Some p-adic aspects of superanalysis,” Proc. Int. Workshop Supersymmetry and Quantum Symmetries, SQS’03, pp. 181–186 (JINR, Dubna, 2004), [arXiv:hep-th/0401044].

    Google Scholar 

  6. B. Dragovich and A. Khrennikov, “p-Adic and adelic superanalysis,” Bulgarian J. Phys. 33(s2), 159–173 (2006), [arXiv: hep-th/0512318].

    MATH  MathSciNet  Google Scholar 

  7. B. Dragovich and A. Khrennikov, “Adelic superanalysis,” Proc. Int. Workshop Supersymmetry and Quantum Symmetries, SQS’05, pp. 384–392 (JINR, Dubna, 2006).

    Google Scholar 

  8. J. Schwinger, “A note to the quantum dynamical principle,” Phil. Mag. 44, 1171–1193 (1953).

    Article  MATH  MathSciNet  Google Scholar 

  9. J. L. Martin, “Generalized classical dynamics and “classical analogue” of a Fermi oscillator,” Proc. Royal Soc. A. 251, 536–542 (1959).

    Article  MATH  Google Scholar 

  10. J. L. Martin, “The Feynman principle for a Fermi system,” Proc. Royal Soc. A 251, 543–549 (1959).

    Article  MATH  Google Scholar 

  11. A. Yu. Khrennikov, “Functional superanalysis,” Uspekhi Matem. Nauk 43, 87–114 (1988); English translation: Russian Math. Surveys 43, 103 (1988).

    MathSciNet  Google Scholar 

  12. A. Yu. Khrennikov, Supernalysis (Nauka, Fizmatlit, Moscow, 1997) [in Russian]; English translation: (Kluwer, Dordreht, 1999).

    Google Scholar 

  13. A. Salam and J. Strathdee, “Feynman rules for superfields,” Nucl. Phys. B 86, 142–152 (1975).

    Article  MathSciNet  Google Scholar 

  14. J. Wess and B. Zumino, “Supergauge transformations in four dimensions,” Nucl. Phys. B 70, 39–50 (1974).

    Article  MathSciNet  Google Scholar 

  15. J. Dell and I. Smolin, “Graded manifolds theory as the geometry of supersymmetry,” Commun. Math. Phys. 66, 197–222 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  16. B. S. De Witt, Supermanifolds (Cambridge, U. P., 1984).

    Google Scholar 

  17. A. Rogers, “Super Lie groups: global topology and local structure,” J. Math. Phys. 21, 724–731 (1980).

    Google Scholar 

  18. A. Rogers, “A global theory of supermanifolds,” J. Math. Phys. 22, 939–945 (1981).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Khrennikov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrennikov, A.Y. Foundations of analysis on superspace — 1: Differential calculus. P-Adic Num Ultrametr Anal Appl 7, 96–110 (2015). https://doi.org/10.1134/S2070046615020028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046615020028

Key words

Navigation