Reflexive games and non-Archimedean probabilities

Research Articles

Abstract

In reflexive games we deal with an unlimited hierarchy of cognitive pictures. Aumann’s understanding of common knowledge satisfies the classical intuition that we can appeal only to inductive sets in our reasoning about these cognitive pictures involved in reflexive games. In this paper I propose to deny this intuition and appeal to non-Archimedean probabilities in defining cognitive pictures of our reflexion. This allows us to define reflexive games of finite or infinite levels.

Key words

AumannTs agreement theorem reflexion disagreement theorem knowledge operators non-Archimedean probabilities p-adic probabilities 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. Aumann, “Agreeing to disagree,” Annals Statist. 4(6), 1236–1239 (1976).CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    R. J. Aumann, Notes on Interactive Epistemology. Mimeo (Hebrew Univ. of Jerusalem, Jerusalem, 1989).Google Scholar
  3. 3.
    J. L. Austin, How to do Things with Words: The William James Lectures Delivered at Harvard University in 1955, eds. J. O. Urmson and Marina Sbisp (Clarendon Press, Oxford, 1962).Google Scholar
  4. 4.
    A. Brandenburger and H. J. Keisler, “An impossibility theorem on beliefs in games,” Studia Logica 84(2), 211–240 (2006).CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    A. Brandenburger, A. Friedenberg and H. J. Keisler, “Fixed points in epistemic game theory,” eds. S. Abramsky and M. Mislove, Mathematical Foundations of Information Flow (American Math. Society, 2012).Google Scholar
  6. 6.
    A. Yu. Khrennikov, “p-Adic quantum mechanics with p-adic valued functions,” J. Math. Phys. 32(4), 932–937 (1991).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    A. Yu. Khrennikov, Non-Archimedian Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer Acad. Publisher, Dordrecht 1997).CrossRefGoogle Scholar
  8. 8.
    A. Yu. Khrennikov, Interpretations of Probability (VSP Int. Sc. Publishers, Utrecht/Tokyo 1999).MATHGoogle Scholar
  9. 9.
    A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Kluwer Acad. Publishers, Dordrecht, 1994).CrossRefMATHGoogle Scholar
  10. 10.
    A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological and Anomalous Phenomena (Kluwer Acad. Publishers, Dordrecht, 2004).CrossRefMATHGoogle Scholar
  11. 11.
    A. Yu. Khrennikov, Modeling of Processes of Thinking in p-Adic Coordinates (Nauka, Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  12. 12.
    Ch. Knudsen, “Equilibrium, perfect rationality and the problem of self-reference in economics,” ed. U. Maki, Rationality, Institutions and Economic Methodology (Routledge Chapman & Hall, 1993).Google Scholar
  13. 13.
    V. A. Lefebvre, “The basic ideas of reexive game’s logic,” Problems of Systems and Structures Research, pp. 73–79 (1965) [in Russian].Google Scholar
  14. 14.
    V. A. Lefebvre, Algebra of Conscience (D. Reidel, 1982).CrossRefMATHGoogle Scholar
  15. 15.
    V. A. Lefebvre, Lectures on Reflexive Game Theory (Leaf & Oaks, Los Angeles, 2010).Google Scholar
  16. 16.
    G. J. Mailath and L. Samuelson, Repeated Games and Reputations: Long-Run Relationships (Oxford Univ. Press, 2006).CrossRefGoogle Scholar
  17. 17.
    A. Robinson, Non-Standard Analysis. Studies in Logic and the Foundations of Mathematics (North-Holland, 1966).Google Scholar
  18. 18.
    A. Schumann and A. Yu. Khrennikov, “Logical approach to p-adic probabilities,” Bull. Sect. Logic 35(1), 49–57 (2006).MATHMathSciNetGoogle Scholar
  19. 19.
    A. Schumann, “p-Adic multiple-validity and p-adic valued logical calculi,” J. Multiple-Valued Logic Soft Comp. 13(1–2), 29–60 (2007).MATHMathSciNetGoogle Scholar
  20. 20.
    A. Schumann, “Non-Archimedean fuzzy and probability logic,” J. Appl. Non-Class. Logics 18(1), 29–48 (2008).CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    A. Schumann, “Non-well-founded probabilities and coinductive probability logic,” in Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’08), IEEE Comp. Soc. Press 2, 54–57 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Schumann, “Non-well-founded probabilities on streams,” eds. D. Dubois et al., Soft Methods for Handling Variability and Imprecision, Advan. Soft Comp. 48, 59–65 (2008).CrossRefGoogle Scholar
  23. 23.
    A. Schumann and A. Yu. Khrennikov, “p-Adic physics, non-well-founded reality and unconventional computing,” p-Adic Numbers Ultram. Anal. Appl. 1(4), 297–306 (2009).CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    A. Schumann and A. Yu. Khrennikov, “Physics beyond the set-theoretic axiom of foundation,” ed. A. Khrennikov, Foundations of Probability and Physics-5, AIP Conf. Proc. 1101, 374–380 (2009).Google Scholar
  25. 25.
    A. Schumann, “Non-well-founded probabilities within unconventional computing,” 6th International Symposium on Imprecise Probability: Theories and Applications (United Kingdom, Durham, 2009).Google Scholar
  26. 26.
    A. Schumann, “Non-Archimedean valued extension of logic BL and p-adic valued extension of logic BL,” J. Uncertain Systems 4(2), 99–115 (2010).Google Scholar
  27. 27.
    J. R. Searle, Speech Acts; an Essay in the Philosophy of Language (Cambridge Univ. Press, 1969).CrossRefGoogle Scholar
  28. 28.
    J. R. Searle, Expression and Meaning: Studies in the Theory of Speech Acts (Cambridge Univ. Press, 1979).CrossRefGoogle Scholar
  29. 29.
    J. R. Searle and D. Vanderveken, Foundations of Illocutionary Logic (Cambridge Univ. Press, 1984).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.University of Information Technology and ManagementRzeszowPoland

Personalised recommendations