Skip to main content
Log in

Cite this article

Abstract

With an eye on applications in quantum mechanics and other areas of science, much work has been done to generalize traditional analytic methods to p-adic systems. In 2002 the first paper on p-adic wavelets was published. Since then p-adic wavelet sets, multiresolution analyses, and wavelet frames have all been introduced. However, so far all constructions have involved dilations by p. This paper presents the first construction of a p-adic wavelet system with a more general matrix dilation, laying the foundation for further work in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.A. Avetisov, A. H. Bikulov and S. V. Kozyrev, “Application of p-adic analysis tomodels of breaking of replica symmetry,” J. Phys. A 32(50), 8785–8791 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A 35(2), 177–189 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Albeverio, S. Evdokimov and M. Skopina, “p-Adicmultiresolution analysis and wavelet frames,” J. Fourier Anal. Appl. (2010), Accepted and pre-published online.

  4. J. J. Benedetto and R. L. Benedetto, “A wavelet theory for local fields and related groups,” J. Geom. Anal. 14(3), 423–456 (2004).

    MathSciNet  MATH  Google Scholar 

  5. R. L. Benedetto, “Examples of wavelets for local fields,” Wavelets, Frames and Operator Theory, Contemp. Math. 345, 27–47 (2004) (Amer.Math. Soc., Providence, RI, 2004).

  6. I. Daubechies, Ten Lectures onWavelets, CBMS-NSFRegionalConferenceSeries inAppliedMathematics 61 (Society for Industrial and AppliedMath., SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  7. C. de Boor, R. A. DeVore and A. Ron, “On the construction of multivariate (pre)wavelets,” Constr. Approx. 9(2–3), 123–166 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Dragovich and A. Dragovich, “A p-adic model of DNA sequence and genetic code,” p-Adic Numbers, Ultrametric Analysis and Applications 1(1), 34–41 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Gröchenig and W. R. Madych, “Multiresolution analysis, Haar bases, and self-similar tilings of R n, IEEE Trans. Inform. Theory 38(2), 556–568 (1992).

    Article  MathSciNet  Google Scholar 

  10. K. Gröchenig and T. Strohmer, “Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class,” J. Reine Angew.Math. 613, 121–146 (2007).

    MathSciNet  MATH  Google Scholar 

  11. K. Hensel, “Über eine neue Begründung der Theorie der algebraischen Zahlen,” Jahresbericht der Deutschen Mathematiker-Vereinigung 6(3), 83–88 (1897).

    Google Scholar 

  12. S. Katok, p-Adic Analysis Compared with Real, Student Math. Library 37 (American Math. Society, Providence, RI, 2007).

    MATH  Google Scholar 

  13. A. Khrennikov, p-Adic Valued Distributions in Mathematical Physics, Mathematics and its Appl. 309 (Kluwer Academic Publ. Group, Dordrecht, 1994).

    MATH  Google Scholar 

  14. A. Yu. Khrennikov and S. V. Kozyrev, “Genetic code on the diadic plane,” Physica A: Stat. Mech. Appl. 381, 265–272 (2007).

    Article  Google Scholar 

  15. H. Koch, Number Theory, Graduate Studies in Math. 24 (American Math. Society, Providence, RI, 2000). Algebraic Numbers and Functions Translated from the 1997 German original by D. Kramer.

    Google Scholar 

  16. S. V. Kozyrev, “Wavelet theory as p-adic spectral analysis,” Izv. Ross. Akad. Nauk Ser.Mat. 66(2), 149–158 (2002).

    MathSciNet  Google Scholar 

  17. S. V. Kozyrev, “p-Adic pseudodifferential operators and p-adic wavelets, Theor. Math. Phys. 138(3), 383–394 (2004).

    Article  MathSciNet  Google Scholar 

  18. A. Yu. Khrennikov and V. M. Shelkovich, “An infinite family of p-adic non-Haar wavelet bases and pseudodifferential operators,” p-Adic Numbers, Ultrametric Analysis and Applications 1(3), 204–216 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic refinable functions and MRA-based wavelets,” J. Approx. Theory 161(1), 226–238 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Yu. Khrennikov, V. M. Shelkovich and M. Skopina, “p-Adic orthogonal wavelet bases,” p-Adic Numbers, Ultrametric Analysis and Applications 1(2), 145–156 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Reiter and J.D. Stegeman, Classical Harmonic Analysis and Locally CompactGroups, LondonMath. SocietyMonographs. New Series 22 (Clarendon Press Oxford Univ. Press, New York, 2000).

    Google Scholar 

  22. V. Shelkovich and M. Skopina, “p-Adic Haar multiresolution analysis and pseudo-differential operators,” J. Fourier Anal. Appl. 15(3), 366–393 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. H. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, Princeton, N.J., 1975).

    MATH  Google Scholar 

  24. V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific Publ. Co. Inc., River Edge, NJ, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily J. King.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

King, E.J., Skopina, M.A. Quincunx multiresolution analysis for L 2(ℚ 22 ). P-Adic Num Ultrametr Anal Appl 2, 222–231 (2010). https://doi.org/10.1134/S2070046610030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046610030040

Key words

Navigation