Skip to main content
Log in

Dynamics on rugged landscapes of energy and ultrametric diffusion

  • Research Articles
  • Published:
P-Adic Numbers, Ultrametric Analysis, and Applications Aims and scope Submit manuscript

Abstract

We discuss the interbasin kinetics approximation for random walk on a complex (rugged) landscape of energy. In this approximation the random walk is described by the system of kinetic equations corresponding to transitions between the local minima of energy. If we approximate the transition rates between the local minima by the Arrhenius formula then the system of kinetic equations will be hierarchical. We discuss for a generic landscape of energy the anzats of interbasin kinetics which is equivalent to the ultrametric diffusion generated by an ultrametric pseudodifferential operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Hoffmann and P. Sibani, “Diffusion in hierarchies,” Phys. Rev. A. 38, 4261–4270 (1988).

    Article  MathSciNet  Google Scholar 

  2. F. H. Stillinger, “Relaxation behavior in atomic and molecular glasses,” Phys. Rev. B. 41, 2409–2416 (1990).

    Article  Google Scholar 

  3. H. Yoshino, “Hierarchical diffusion, aging and multifractality,” J. Phys. A. 30, 1143 (1997); arXiv:cond-mat/9604033.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. T. Ogielski and D. L. Stein, “Dynamics on ultrametric spaces,” Phys. Rev. Lett. 55(15), 1634–1637 (1985).

    Article  MathSciNet  Google Scholar 

  5. L. Brekke and M. Olson, “p-Adic diffusion and relaxation in glasses,” Preprint UTTG-16-89, EFI-89-23.

  6. L. Brekke and P. G. O. Freund, “p-Adic numbers in physics,” Phys. Rept. 233, 1–66 (1993).

    Article  MathSciNet  Google Scholar 

  7. H. Frauenfelder, S. G. Sligar and P. G. Wolynes, “The energy landscape and motions of proteins,” Science 254, 1598–1603 (1991).

    Article  Google Scholar 

  8. V. I. Goldansky, Yu. F. Krupiansky, K. V. Shaitan and A. B. Rubin, “Investigation of proteins using the Mossbauer spectroscopy,” Biofizika 3, 761–774 (1987) [in Russian].

    Google Scholar 

  9. F. H. Stillinger and T. A. Weber, “Hidden structure in liquids,” Phys. Rev. A 25, 978–989 (1982).

    Article  Google Scholar 

  10. F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225, 983–989 (1984).

    Article  Google Scholar 

  11. O. M. Becker and M. Karplus, “The topology of multidimensional protein energy surfaces: theory and application to peptide structure and kinetics,” J. Chem. Phys. 106, 1495–1517 (1997).

    Article  Google Scholar 

  12. V. A. Avetisov, A. H. Bikulov and S. V. Kozyrev, “Application of p-adic analysis to models of spontaneous breaking of replica symmetry,” J. Phys. A: Math. Gen. 32(50), 8785–8791 (1999); arXiv:cond-mat/9904360.

    Article  MATH  MathSciNet  Google Scholar 

  13. V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev and V. A. Osipov, “p-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes,” J. Phys. A: Math. Gen. 35(2), 177–189 (2002); arXiv:cond-mat/0106506

    Article  MATH  MathSciNet  Google Scholar 

  14. V. A. Avetisov, A. H. Bikulov and V. A. Osipov, “p-Adic description of characteristic relaxation in complex systems,” J. Phys. A: Math. Gen. 36(15), 4239–4246 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. A. Avetisov, A. Kh. Bikulov and A. P. Zubarev, “First passage time distribution and the number of returns for ultrametric random walks,” J. Phys. A: Math. Theor. 42(8), 18 (2009).

    Article  MathSciNet  Google Scholar 

  16. V. A. Avetisov and A. Kh. Bikulov, “Protein ultrametricity and spectral diffusion in deeply frozen proteins,” Biophys. Rev. Lett. 3(3), 387–396 (2008).

    Article  Google Scholar 

  17. V. A. Avetisov, A. Kh. Bikulov, O. A. Vasilyev, S. K. Nechaev and A. V. Chertovich, “Some physical applications of random hierarchical matrices,” JETP 109(3), 485–504 (2009).

    Article  Google Scholar 

  18. V. A. Avetisov, A. V. Chertovich, S. K. Nechaev and O. A. Vasilyev, “On scale-free and poly-scale behaviors of random hierarchical networks,” J. Stat. Mech. P07008, 15 (2009).

    Google Scholar 

  19. V. A. Avetisov, A. Kh. Bikulov and S. K. Nechaev, “Random hierarchical matrices: spectral properties and relation to polymers on disordered trees,” J. Phys. A: Math. Theor. 42(7), 9 (2009).

    Article  MathSciNet  Google Scholar 

  20. Y. V. Fyodorov and J.-Ph. Bouchaud, “Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces,” J. Phys. A: Math. Theor. 41(32), 25 (2008).

    Article  MathSciNet  Google Scholar 

  21. A. Yu. Khrennikov and S. V. Kozyrev, “Localization in space for a free particle in ultrametric quantum mechanics,” Doklady Math. 74(3), 906 (2006).

    Article  MathSciNet  Google Scholar 

  22. S.V. Kozyrev, “Ultrametric dynamics as a model of interbasin kinetics,” Izvestia NAN Armenia: Mathematics 41(5), 28–38 (2006); arXiv:0711.1453.

    MathSciNet  Google Scholar 

  23. M. Mezard,G. Parisi and M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore 1987).

    MATH  Google Scholar 

  24. G. Parisi and N. Sourlas, “p-Adic numbers and replica symmetry breaking,” Eur. Phys. J. B. 14, 535–542 (2000); arXiv:cond-mat/9906095.

    Article  MathSciNet  Google Scholar 

  25. H. Frauenfelder, B. H. McMahon and P. W. Fenimore, “Myoglobin: the hydrogen atom of biology and paradigm of complexity,” PNAS 100(15), 8615–8617 (2003).

    Article  Google Scholar 

  26. D. J. Wales, M. A. Miller and T. R. Walsh, “Archetypal energy landscapes,” Nature 394, 758–760 (1998).

    Article  Google Scholar 

  27. P. G. Wolynes, J. Onuchic and D. Thirumalai, “Navigating the folding routes,” Science 267, 1619–1620 (1995).

    Article  Google Scholar 

  28. L. A. Blumenfeld, Problems of Biological Physics (Springer Verlag, Berlin, 1981).

    Google Scholar 

  29. V. S. Vladimirov, I. V. Volovich and Ye. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Scientific, Singapore 1994).

    Google Scholar 

  30. A. Yu. Khrennikov and S. V. Kozyrev, “Pseudodifferential operators on ultrametric spaces and ultrametric wavelets,” Izvestiya: Math. 69(5), 989–1003 (2005); arXiv:math-ph/0412062.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Yu. Khrennikov and S. V. Kozyrev, “Wavelets on ultrametric spaces,” Appl. Comput. Harm. Anal. 19, 61–76 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. S. V. Kozyrev, “Wavelets and spectral analysis of ultrametric pseudodifferenial operators,” Sbornik Math. 198(1), 103–126 (2007): arXiv:math-ph/0412082.

    Article  MathSciNet  Google Scholar 

  33. S. V. Kozyrev, Methods and Applications of Ultrametrix and p-Adic Analysis, Modern Problems of Mathematics 12 (Steklov Math. Institute, Moscow, 2008); http://www.mi.ras.ru/spm/pdf/012.pdf. [in Russian].

    Google Scholar 

  34. B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev and I. V. Volovich, “On p-adicmathematical physics,” p-Adic Numbers, Ultrametric Analysis and Applications 1(1), 1–17 (2009); arXiv:0904.4205.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Kozyrev.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozyrev, S.V. Dynamics on rugged landscapes of energy and ultrametric diffusion. P-Adic Num Ultrametr Anal Appl 2, 122–132 (2010). https://doi.org/10.1134/S2070046610020044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046610020044

Key words

Navigation