Modelling of psychological behavior on the basis of ultrametric mental space: Encoding of categories by balls


In this paper we present a model of processing of mental information based on encoding by points of ultrametric space. Basic mental entities categories are encoded by ultrametric balls. Our model describes processes which take place in subconsciousness. It seems that ultrametric is a right tool for modeling of unconscious mental processes. Properties of ultrametric balls match well properties of unconscious representation of information which have been discussed in psychology.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Albeverio, A. Yu. Khrennikov and P. Kloeden, “Memory retrieval as a p-adic dynamical system,” Biosystems 49, 105–115 (1999).

    Article  Google Scholar 

  2. 2.

    D. Amit, Modeling Brain Function (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  3. 3.

    R. Ashby, Design of a brain (Chapman-Hall, London, 1952).

    Google Scholar 

  4. 4.

    B. J. Baars, In the theater of consciousness, The workspace of mind (Oxford University Press, Oxford, 1997).

    Google Scholar 

  5. 5.

    M. Bar, “Top-down facilitation of visual object recognition,” in Neurobiology of attention, pp. 140–145, Eds. L. Itti, G. Rees and J. K. Tsotsos (Elsevier, Amsterdam, 2005).

    Google Scholar 

  6. 6.

    W. Bechtel and A. Abrahamsen, Connectionism and the mind (Basil Blackwell, Cambridge, 1991).

    Google Scholar 

  7. 7.

    W. Bechterew, Die Funktionen der Nervencentra (Fischer, Jena, 1911).

    Google Scholar 

  8. 8.

    J. Benois-Pineau, A. Yu. Khrennikov and N. V. Kotovich, “Segmentation of images in p-adic and Euclidean metrics,” Dokl. Akad. Nauk. 381(5), 604–609. English Translation: Doklady Mathematics 64 (3), 450–455 (2001).

    MathSciNet  Google Scholar 

  9. 9.

    C. Blomberg, H. Liljenstrym, B. I. B. Lindahl and P. Arhem, (Eds), “Mind and Matter: Essays from Biology, Physics and Philosophy: An Introduction,” J. Theor. Biol. 171 (1994).

  10. 10.

    N. Chomsky, “Formal properties of grammas,” in Handbook of Mathematical Psychology, pp. 323–418, Eds. R. D. Luce, R. R. Bush and E. Galanter (Wiley, New York, 1963).

    Google Scholar 

  11. 11.

    P. S. Churchland and T. Sejnovski, The Computational Brain (MITP, Cambridge, 1992).

    Google Scholar 

  12. 12.

    A. Clark, Psychological Models and Neural Mechanisms. An Examination of Reductionism in Psychology (Clarendon Press, Oxford, 1980).

    Google Scholar 

  13. 13.

    H. Damasio and A. R. Damasio, Lesion Analysis in Neuropsychology (Oxford Univ. Press, New-York, 1989).

    Google Scholar 

  14. 14.

    A. R. Damasio, Descartes’ Error: Emotion, Reason, and the Human Brain (Penguin, 2005).

  15. 15.

    B. Dragovich and A. Dragovich, “A p-adic model of DNA sequence and genetic code,” p-Adic Numbers, Ultrametric Analysis and Applications 1(1), 34–41 (2009); arXiv:q-bio.GN/0607018v1 (2006).

    Article  Google Scholar 

  16. 16.

    D. Dubischar, V. M. Gundlach, O. Steinkamp and A. Yu. Khrennikov, “A p-adic model for the process of thinking disturbed by physiological and information noise,” J. Theor. Biology 197, 451–467 (1999).

    Article  Google Scholar 

  17. 17.

    C. Eliasmith, “The third contender: a critical examination of the dynamicist theory of cognition,” Phil. Psychology 9(4), 441–463 (1996).

    Article  Google Scholar 

  18. 18.

    J. A. Fodor and Z. W. Pylyshyn, “Connectionism and cognitive architecture: a critical analysis,” Cognition 280, 3–17 (1988).

    Article  Google Scholar 

  19. 19.

    S. Freud, The Interpretation of Dreams (Standard Edition, 4 and 5, 1900).

  20. 20.

    S. Freud, New Introductory Lectures on Psychoanalysis (Norton, New York, 1933).

    Google Scholar 

  21. 21.

    J. M. D. Fuster, The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven, Philadelphia, 1997).

    Google Scholar 

  22. 22.

    J. F. Herbart, The Application of Psychology to the Science of Education (Charles Scribners Sons, 1898).

  23. 23.

    J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 1554–2558 (1982).

    Article  MathSciNet  Google Scholar 

  24. 24.

    F. C. Hoppensteadt, An Introduction to the Mathematics of Neurons: Modeling in the Frequency Domain (Cambridge Univ. Press, New York, 1997).

    Google Scholar 

  25. 25.

    D. Hubel and T. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).

    Google Scholar 

  26. 26.

    Ivanitsky, A. M.: “Brain’s physiology and the origin of the human’s subjective world,” J. High Nerves Activity 49,(5), 707–713 (1999).

    Google Scholar 

  27. 27.

    A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, Dordrecht, 1997).

    Google Scholar 

  28. 28.

    A. Yu. Khrennikov, “Human subconscious as the p-adic dynamical system,” J. Theor. Biology 193, 179–196 (1998).

    Article  Google Scholar 

  29. 29.

    A. Yu. Khrennikov, “p-Adic dynamical systems: description of concurrent struggle in biological population with limited growth,” Dokl. Akad. Nauk 361, 752–763 (1998).

    MATH  MathSciNet  Google Scholar 

  30. 30.

    A. Yu. Khrennikov, “Description of the operation of the human subconscious by means of p-adic dynamical systems,” Dokl. Akad. Nauk 365, 458–460 (1999).

    MATH  MathSciNet  Google Scholar 

  31. 31.

    A. Yu. Khrennikov, “p-Adic discrete dynamical systems and collective behaviour of information states in cognitive models,” Discrete Dynamics in Nature and Society 5, 59–69 (2000).

    Article  Google Scholar 

  32. 32.

    A. Yu. Khrennikov, “Classical and quantum mechanics on p-adic trees of ideas,” Bio Systems 56, 95–120 (2000).

    Google Scholar 

  33. 33.

    A. Yu. Khrennikov, Classical and Quantum Mental Models and Freud’s Theory of Unconscious Mind, Series Math. Modelling in Phys., Engineering and Cognitive Sciences, 1 (Växjö Univ. Press, Växjö, 2002).

    Google Scholar 

  34. 34.

    A. Yu. Khrennikov and N. V. Kotovich, “Representation and compression of images with the aid of the m-adic coordinate system,” Dokl. Akad. Nauk. 387(2), 159–163 (2002).

    MathSciNet  Google Scholar 

  35. 35.

    A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena (Kluwer, Dordreht, 2004).

    Google Scholar 

  36. 36.

    A. Yu. Khrennikov, “Probabilistic pathway representation of cognitive information,” J. Theor. Biology 231, 597–613 (2004).

    Article  Google Scholar 

  37. 37.

    A. Yu. Khrennikov, N. V. Kotovich and E. L. Borzistaya, “Compression of images with the aid of representation by p-adic maps and approximation by Mahler’s polynomials,” Dokl. Akad. Nauk 396(3), 305–308. English Translation: Doklady Mathematics 69 (3), 373–377 (2004).

    MathSciNet  Google Scholar 

  38. 38.

    A. Yu. Khrennikov, “p-Adic information space and gene expression,” in Integrative Approaches to Brain Complexity, p. 14, Eds. S. Grant, N. Heintz and J. Noebels (Wellcome Trust Publ., 2006).

  39. 39.

    A. Yu. Khrennikov and S. V. Kozyrev, “Genetic code on the dyadic plane,” Physica A: Stat. Mech. Appl. 381, 265–272 (2007); arXiv:q-bio/0701007.

    Article  Google Scholar 

  40. 40.

    A. Yu. Khrennikov, “Toward an adequate mathematical model of mental space: Conscious/unconscious dynamics on m-adic trees,” Biosystems 90(3), 656–675 (2007).

    Article  Google Scholar 

  41. 41.

    R. Lauro-Grotto, “The unconscious as an ultrametric set,” American Imago 64, 535–543 (2007).

    Article  Google Scholar 

  42. 42.

    A. Luczak, P. Bartho, S. L. Marguet, G. Buzsaki and K. D. Hariis, “Neocortical spontaneous activity in vivo: cellular heterogeneity and sequential structure,” Preprint of CMBN, Rutgers Univ. (2007).

  43. 43.

    F. Murtagh, “On ultrametricity, data coding, and computation,” J. Classification 21, 167–184 (2004).

    MATH  Article  MathSciNet  Google Scholar 

  44. 44.

    M. Pitkänen, TGD Inspired Theory of Consciousness with Applications to Biosystems, Electronic book, (1998).

  45. 45.

    M. Pitkänen, “Could genetic code be understood number theoretically?” Electronic preprint, (2006).

  46. 46.

    A. Revonsuo and J. Newman, “Binding and consciousness,” Consciousness and Cognition 8, 123–127 (1999).

    Article  Google Scholar 

  47. 47.

    E. Rosch, “Cognitive reference points,” Cognitive Psychology 7, 532–547 (1975).

    Article  Google Scholar 

  48. 48.

    J. R. Smythies, Brain Mechanisms and Behaviour (Blackwell Sc. Publ., Oxford, 1970).

    Google Scholar 

  49. 49.

    S. M. Stringer and E. Rolls, “Invariant object recognition in the visual system with novel views of 3D objects,” Neural. Comput. 14, 2585–2596 (2002).

    MATH  Article  Google Scholar 

  50. 50.

    S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Addison Wesley, 1994).

  51. 51.

    A. Thiele and G. Stoner, “Neuronal synchrony does not correlate with motion coherence in cortical area MT,” Nature 421, 366–370 (2003).

    Article  Google Scholar 

  52. 52.

    T. van Gelder and R. Port, “It’s about time: Overview of the dynamical approach to cognition,” in Mind as motion: Explorations in the dynamics of cognition, pp. 1–43, Eds. T. van Gelder and R. Port, (MITP, Cambridge, Mass, 1995).

    Google Scholar 

  53. 53.

    T. van Gelder, “What might cognition be, if not computation?” J. Philosophy 91, 345–381 (1995).

    Article  Google Scholar 

  54. 54.

    V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Sc. Publ., Singapore, 1994).

    Google Scholar 

  55. 55.

    R. J. Watt and W. A. Phillips, “The function of dynamical grouping in vision,” Trends Cogn. Sc. 4, 447–454 (2000).

    Article  Google Scholar 

  56. 56.

    H. Zimmer, A. Mecklinger, and U. Lindenberger, Handbook of Binding and Memory. Perspectives from Cognitive Neuroscience (Oxford Univ. Press, Oxford, 2006).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Andrei Yu. Khrennikov.

Additional information

The text was submitted by the author in English.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khrennikov, A.Y. Modelling of psychological behavior on the basis of ultrametric mental space: Encoding of categories by balls. P-Adic Num Ultrametr Anal Appl 2, 1–20 (2010).

Download citation

  • ultrametric cognition
  • consciousness and unconsciousness
  • ultrametric balls
  • ideas
  • categories
  • processing of mental information
  • p-adic dynamical systems