Skip to main content
Log in

Role of Fungi and Bacteria in the Mineralization of Nitrogen Compounds in the Soil of the Southern Taiga Birch Forest in European Russia

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The contribution of fungi and bacteria to the process of net ammonification in the soddy–podzolic soil of the wood sorrel–bilberry birch forest of Yaroslavl oblast has been determined using inhibitory analysis. Representatives of the genera Penicillium Link (70–99%) and Trichoderma Pers. (6–20%) dominate in the mycobiota of saprotrophic fungi. Seasonal changes in the total number of fungi and the content of Corg and Norg in the soil correlate only in the eluvial horizon, with r = (–0.8) and (–0.7). In horizons A0 and A2, total fungal abundance is negatively correlated with nitrogen accumulation, with r = (–0.85) to (–0.89). It has been established that the litter is characterized by an equal participation of fungi and bacteria in this process. In the humus horizon, a slight excess of the participation of fungi over bacteria is noted. In the eluvial part of the profile, the contribution of bacteria is slightly higher than the contribution of fungi. The maximum air temperature is able to regulate the seasonal dynamics of the number of saprotrophic fungi in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Ananyeva, N.D., Stolnikova, E.V., Susyan, E.A., and Khodzhaeva, A.K., The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by soddy-podzolic soils of postagrogenic biogeocenoses, Eurasian Soil Sci., 2010, vol. 43, pp. 1287–1293.

    Article  ADS  Google Scholar 

  2. Ananyeva, N.D., Ivashchenko, K.V., Stolnikova, E.V., Stepanov, A.L., and Kudeyarov, V.N., Specific features of determination of the net production of nitrous oxide by soils, Eurasian Soil Sci., 2015, vol. 48, pp. 608–619.

    Article  ADS  CAS  Google Scholar 

  3. Bailey, V.L., Smith, J.L., and Bolton, H., Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal:bacterial ratios in soil, Bio-l. Fertil. Soils, 2003, vol. 38, pp. 154–160.

    Article  CAS  Google Scholar 

  4. Baskaran, P., Hyvönen, R., Berglund, S., Clemmensen, K., Ågren, G., Björn, D., Lindahl, B., and Manzoni, S., Modelling the influence of ectomycorrhizal decomposition on plant nutrition and soil carbon sequestration in boreal forest ecosystems, New Phytol., 2017, vol. 213, pp. 1452–1465.

    Article  CAS  PubMed  Google Scholar 

  5. Bekker, Z.E., Fiziologiya i biokhimiya gribov (Physiology and Biochemistry of Fungi), Moscow: Mosk. Gos. Univ., 1988.

  6. Blagodatskaya, E., Dannenman, M., Gashe, R., and Butterbach-Bahl, K., Microclimate and forest management alter fungal-to-bacterial ratio and N2O-emission during rewetting in the forest floor and mineral soil of mountainous beech forests, Biogeochemistry, 2010, vol. 97, pp. 55–70.

    Article  CAS  Google Scholar 

  7. Boer, W., Folman, L.B., Summerbell, R.C., and Boddy, L., Living in a fungal world:impact of fungi on soil bacterial niche development, FEMS Microbiol. Rev., 2005, vol. 29, pp. 795–781.

    Article  PubMed  Google Scholar 

  8. Bogorodskaya, A.V. and Shishikin, A.S., Dynamics, structure, and functional activity of microbial biomass in soils of restoring felled areas in fir forests of the Yenisei Ridge, Eurasian Soil Sci., 2020, vol. 53, pp. 126–136.

    Article  ADS  CAS  Google Scholar 

  9. Boyle, S.A., Yarwood, R.R., Peter, J., Bottomley, P.J., and Myrold, D.D., Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon, Soil Biol. Biochem., 2008, vol. 40, pp. 443–451.

    Article  CAS  Google Scholar 

  10. Castaldi, S. and Smith, K.A., Effect of cycloheximide on N2O and \({\text{NO}}_{3}^{ - }\) production in a forest and an agricultural soil, Biol. Fertil. Soils, 1998, vol. 27, pp. 27–34.

    Article  CAS  Google Scholar 

  11. Chigineva, N.I., Aleksandrova, A.V., Marhan, S., Kandeler, E., and Tiunov, A.V., The importance of mycelial connection at the soil–litter interface for nutrient translocation, enzyme activity and litter decomposition, Appl. Soil Ecol., 2011, vol. 51, pp. 35–41.

    Article  Google Scholar 

  12. Compton, J.E., Watrud, L.S., Porteous, L.A., and De Grood, S., Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest, For. Ecol. Manage., 2004, vol. 196, pp. 143–158.

    Article  Google Scholar 

  13. Dobrovol’skaya, T.G., Zvyagintsev, D.G., Chernov, I.Yu., Golovchenko, A.V., Zenova, G.M., Lysak, L.V, Manucharova, N.A., Marfenina, O.E., Polyanskaya, L.M., Stepanov, A.L., and Umarov, M.M., The role of microorganisms in the ecological functions of soils, Eurasian Soil Sci., 2015, vol. 48, pp. 959–967.

    Article  ADS  Google Scholar 

  14. Enikeeva, M.G., The influence of shallow reclamation on soil microflora in the southern taiga subzone, in Lesovodstvennye issledovaniya v podzone yuzhnoi taigi (Silvicultural Research in the Southern Taiga Subzone), Moscow: Nauka, 1977.

  15. He, L., Rodrigues, J.L.M., Soudzilovskaia, N.A., Barceloґ, M., Olsson, P.A., Song, C., Tedersoo, L., Yuan, F., Yuan, F., Lipson, D.A., and Xu, X., Global biogeography of fungal and bacterial biomass carbon in topsoil, Soil, 2020, vol. 151, p. 108024.

    CAS  Google Scholar 

  16. Khabibullina, F.M. and Kuznetsova, E.T., Soil mycobiota characteristic in the secondary deciduous forests of middle taiga subzone (Komi Republic), Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2014, vol. 16, no. 1, pp. 891–895.

    Google Scholar 

  17. Landi, L., Badalucco, L., Pomare, F., and Nanniperi, P., Effectiveness of antibiotics to distinguish the contributions of fungi and bacteria to net nitrogen mineralization, nitrification and respiration, Soil Biol. Biochem., 1993, vol. 25, pp. 1771–1778.

    Article  CAS  Google Scholar 

  18. Lindahl, B. and Tunlid, A., Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs, New Phytol., 2015, vol. 205, pp. 1443–1447.

    Article  CAS  PubMed  Google Scholar 

  19. Litvinov, M.A., Opredelitel’ mikroskopicheskikh pochvennykh gribov (Key to Microscopic Soil Fungi), Leningrad: Nauka, 1967.

  20. Llado, S., Lypez-Mondejar, R., and Baldrian, P., Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change, Microbiol. Mol. Biol. Rev., 2017, vol. 81, no. 2, p. e00063-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mašínová, T., Yurkov, A., and Baldrian, P., Forest soil yeasts: Decomposition potential and the utilization of carbon sources, Fungal Ecol., 2018, vol. 34, pp. 10–19.

    Article  Google Scholar 

  22. Metody eksperimental’noi mikologii (Methods of Experimental Mycology), Kiev: Naukova Dumka, 1982.

  23. Mirchink, T.G., Pochvennaya mikologiya (Soil Mycology), Moscow: Mosk. Gos. Univ., 1988.

  24. Morrison, E.W., Serita, D., Frey, S.D., Sadowsky, J.J., van Diepen, L.N.A., Thomas, W.K., and Pringle, A., Chronic nitrogen additions fundamentally restructure the soil fungal community in a temperate forest, Fungal Ecol., 2016, vol. 23, pp. 48–57.

    Article  Google Scholar 

  25. Nikitina, D.A., Chernova, T.I., Zhelezova, A.D., Tkhakakhova, A.K., Nikitina, S.A., Semenova, M.V., Ksenofontova, N.A., and Kutovaya, O.V., Seasonal dynamics of microbial biomass in soddy-podzolic soil, Eurasian Soil Sci., 2019, vol. 52, pp. 1414–1421.

    Article  ADS  Google Scholar 

  26. Odriozola, I., Navrátilová, D., Tláskalová, P., Klinerová, T., Červenková, Z.P., Kohout, P., Větrovský, T., Čížková, P., Starý, M., and Baldrian, P., Predictors of soil fungal biomass and community composition in temperate mountainous forests in Central Europe, Soil Biol. Biochem., 2021, vol. 161, p. 108366.

    Article  CAS  Google Scholar 

  27. Pavlyukova, E.B., Belozerskii, M.A., and Dunaevskii, Ya.E., Extracellular proteolytic enzymes of filamentous fungi. Review, Biokhimiya, 1998, vol. 63, pp. 1059–1089.

    Google Scholar 

  28. Petrovič, M., Briški, F., and Kaštelan-Macan, M., Biosorption and biodegradation of humic substances by Trichoderma viride, Prehrambeno-Tehnol. Biotehnol. Rev., 1993, vol. 31, pp. 145–149.

    Google Scholar 

  29. Phillips, L., Ward, V., and Jones, M., Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests, ISME J., 2014, vol. 8, pp. 699–713.

    Article  CAS  PubMed  Google Scholar 

  30. Polyanskaya, L.M., Yumakov, D.D., Tyugai, Z.N., and Stepanov, A.L., Fungi and bacteria in the dark humus forest soil, Eurasian Soil Sci., 2020, vol. 53, pp. 1255–1259.

    Article  ADS  Google Scholar 

  31. Predtechenskaya, O.O., Spatial distribution and biomass of mycelium macromycetes in soils of pine and birch forests, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Mosk. Gos. Univ., 1998.

  32. Razgulin, S.M., A field method for the determination of nitrogen mineralization in forest soils, Eurasian Soil Sci., 2009, vol. 42, pp. 1249–1253.

    Article  ADS  Google Scholar 

  33. Razgulin, S.M., Mycorrhizal complexes and their role in the ecology of boreal forests (Review), Biol. Bull., 2022, vol. 6, pp. 704–712.

    Article  Google Scholar 

  34. Razgulin, S.M., Tsikl azota v ekosistemakh yuzhnoi taigi Evropeiskoi Rossii (The Nitrogen Cycle in the Ecosystems of the Southern Taiga of European Russia), Moscow: KMK, 2022.

  35. Sponseller, R., Gundale, M., Futter, M., Ring, E., Nordin, A., NaËsholm, T., and Laudon, H., Nitrogen dynamics in managed boreal forests: Recent advances and future research directions, Ambio, 2016, vol. 45, pp. 175–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Starke, R., Mondéjar, R, Human, Z., Navrátilová, D., Štursová, M., Větrovský, T., Olson, H., Orton, D., Callister, S., Lipton, M., et al., Niche differentiation of bacteria and fungi in carbon and nitrogen cycling of different habitats in a temperate coniferous forest: A metaproteomic approach, Soil Biol. Biochem., 2021, vol. 155, p. 108170.

    Article  CAS  Google Scholar 

  37. Strickland, M. and Rousk, J., Review Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications, Soil Biol. Biochem., 2010, vol. 42, pp. 1385–1395.

    Article  CAS  Google Scholar 

  38. West, A.W., Improvements to the selective respiratory inhibition technique to measure eukaryote:prokaryote ratios in soils, J. Microbiol. Methods, 1986, vol. 5, pp. 125–138.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Razgulin.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razgulin, S.M., Voronin, L. Role of Fungi and Bacteria in the Mineralization of Nitrogen Compounds in the Soil of the Southern Taiga Birch Forest in European Russia. Contemp. Probl. Ecol. 17, 75–82 (2024). https://doi.org/10.1134/S1995425524010104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425524010104

Keywords:

Navigation