Skip to main content
Log in

Development of a Diagnostic Scale for Assessing the Vital State of Pine Stands under Conditions of Technogenic Pollution by Emissions from a Large Aluminum Smelter

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Over many years of research into assessing the condition of pine forests polluted by emissions from the Bratsk Aluminum Smelter (BAS), a large array of data of different sizes has been accumulated; when generalizing and structuring it, two groups of representative indicators are identified. The first group includes indicators characterizing with a high degree of reliability the state of assimilated phytomass and growth processes of polluted trees: the percentage of green needles in the tree crown, the mass of needles on the shoots, the total content of chlorophyll in the shoot needles, the ratio of protein and nonprotein nitrogen in the needles, and the value of the Fv/Fm ratio. The second group includes indicators reflecting the efficiency of the antioxidant system: the content of low molecular weight metabolites (proline, catechin, and total glutathione diketogulonic acid (DKGA)), as well as the activity of the peroxidase enzyme. Integral indices are calculated based on these parameters. Regression dependencies between indices and the level of accumulation of elements–pollutants in needles are used to develop scales for assessing the vital state (VS) of forest stands under conditions of technogenic pollution by emissions from a large aluminum smelter. Using this scale, it is possible to identify changes at the earliest stages, when external signs of tree weakening do not yet appear or are minimally expressed. A schematic map is made showing the distribution of pine forests of varying degrees of oppression. It has been established that the maximum deterioration in the condition of tree stands (more than 70%) is observed in local areas in the industrial zone of the BAS, strong deterioration (within 50–69%) is found in different directions from the plant at a distance of up to 10 km away, average (31–49%) is typical for tree stands at a distance of up to 40 km, and weak (11–30%) can be found at a distance of 40–60 (less often 80 km) from the BAS. In the rest of the surveyed territory, changes in the VS of pine stands are minimal, which allows the stands to be characterized as healthy (background).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Afanasyeva, L.V., Kalugina, O.V., and Mikhailova, T.A., The effect of aluminum smelter emissions on nutritional status of coniferous trees (Irkutsk Region, Russia), Environ. Sci. Pollut. Res., 2021, vol. 28, no. 44, pp. 62605–62615.

    Article  CAS  Google Scholar 

  2. Alekseev, V.A., Diagnostics of the vital state of trees and forest stands, Lesovedenie, 1989, no. 4, pp. 51–57.

  3. Allen-Gil, S.M., Ford, J., Lasorsa, B.K., Monetti, M., Vlasova, T., and Landers, D.H., Heavy metal contamination in the Taimyr Peninsula, Siberian Arctic, Sci. Total Environ., 2003, vol. 301, nos. 1–3, pp. 119–138.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Anderegg, L.D.L., Anderegg, W.R.L., and Berry, J.A., Tree physiology review: Not all droughts are created equal: Translating metheorological drought into woody plant mortality, Tree Physiol., 2013, vol. 33, no. 7, pp. 701–712.

    Article  PubMed  Google Scholar 

  5. Avdeeva, E.V. and Izvekov, A.A., Urbodendrologiya. El’ sibirskaya (Picea obovata Ledeb.) i el' kolyuchaya (Picea pungens Engelm.) v nasazhdeniyah goroda Krasnoyarska (Urbodendrology. Siberian Spruce (Picea Obovata Ledeb.) and Prickly Spruce (Picea Pungens Engelm.) in the Plantations of the City of Krasnoyarsk), Krasnoyarsk, 2021.

  6. Bates, L.S., Walden, R.P., and Tear, J.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, no. 1, pp. 205–210.

    Article  CAS  Google Scholar 

  7. Bauduin, S.L., Clerbaux, C.C., Hurtmans, D., and Coheur, P.-F., IASI observations of sulfur dioxide (SO2) in the boundary layer of Norilsk, J. Geophys. Res.: Atmos., 2014, vol. 119, pp. 4253–4263.

    Article  ADS  CAS  Google Scholar 

  8. Bednova, O.V., Technology of rationing and indication of the state of forest ecosystems in the conditions of urban specially protected natural areas, Lesn. Vestn., 2014, no. 6, pp. 36–52.

  9. Blokhina, O., Virolainen, E., and Fagerstedt, K.V., Antioxidants, oxidative damage and oxygen deprivative stress: a review, Ann. Bot., 2003, vol. 91, no. 2, pp. 179–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bobkova, K.S., Robakidze, E.A., and Galenko, E.P., Health state of the stands and the young growth in the native Spruce forests at the ural foohills, the upper reaches of the Pechora River, Contemp. Probl. Ecol., 2010, vol. 3, no. 2, pp. 196–202.

    Article  Google Scholar 

  11. Butusov, O.B. and Stepanov, A.M., Analysis of the ecological state of forest ecosystems in areas of atmospheric chemical pollution, Lesovedenie, 2000, no. 1, pp. 32–38.

  12. Chaplygina, I.A. and Antonova, G.F., Experience in the determination of ascorbic and dehydroascorbic acids in the emerging wood of Siberian larch, in Botanicheskie issledovaniya v Sibiri (Botanical Research in Siberia), Cherepnina, V.L., Ed., Krasnoyarsk, 2002, pp. 254–257.

  13. Chernenkova, T.V., Reaktsiya lesnoi rastitel’nosti na promyshlennoe zagryaznenie (Response of Forest Vegetation to Industrial Pollution), Moscow: Nauka, 2002.

  14. Demidko, D.A., Vitality structure of undisturbed Siberian stone pine stands in the subalpine belt and the timberline in the Mountain Altai, Russ. J. Ecol., 2006, vol. 37, no. 5, pp. 359–362.

    Article  Google Scholar 

  15. Ermakov, A.I., Arasimovich, V.V., Yarosh, N.P., and Peruvian, Yu.A., Metody biokhimicheskogo issledovaniya rastenii (Methods of Biochemical Research of Plants), Moscow: Agropromizda, 1987.

    Google Scholar 

  16. Forman, H.J., Zhang, H., and Rinna, A., Glutathione: overview of its protective roles, measurement, and biosynthesis, Mol. Aspects Med., 2009, vol. 30, nos. 1–2, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  17. Gorshkov, A.G., Determination of polycyclic aromatic hydrocarbons in the needles of a Scotch pine (Pinus Sylvestris L.), a biomonitor of atmospheric pollution, J. Anal. Chem., 2008, vol. 63, no. 8, pp. 805–811.

    Article  CAS  Google Scholar 

  18. Gosudarstvennyi doklad o sostoyanii i ob okhrane okruzhayushchei sredy v Irkutskoi oblasti v 2021 godu (State Report on the State and Protection of the Environment in the Irkutsk Region in 2021), Izhevsk: Print, 2022.

  19. Gytarsky, M., Karaban, R., Nasarov, I.M., Sysygina, T.I., and Cheremis, M.V., Monitoring of forest ecosystems in the Russian subarctic: effects of industrial pollution, Sci. Total Environ., 1995, vol. 164, pp. 57–68.

    Article  ADS  CAS  Google Scholar 

  20. Hasanuzzaman, M., Bhuyan, M.H.M., Zulfiqar, F., Raza, A., Mohsin, S.M., Mahmud, J.A., Fujita, M., and Fotopoulos, V., Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator, Antioxidants, 2020, vol. 9, no. 8, p. 681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalugina, O.V. and Afanas’eva, L.V., Peculiarities of morphostructural parameters of Pinus sylvestris L. under the influence of emissions from aluminum production, Aktual’nye problemy nauki Pribajkal’ya (Current Problems of Science in the Baikal Region), Irkutsk: Irkutsk. Gos. Univ., 2020, vol. 3, pp. 99–103.

    Google Scholar 

  22. Kalugina, O.V., Mikhailova, T.A., and Shergina, O.V., Pinus sylvestris as a bio-indicator of territory pollution from aluminum smelter emissions, Environ. Sci. Pollut. Res., 2017, vol. 24, no. 11, pp. 10279–10291.

    Article  CAS  Google Scholar 

  23. Kalugina, O.V., Mikhailova, T.A., and Shergina, O.V., Biochemical Adaptation of Scots Pine (Pinus sylvestris L.) to technogenic pollution, Contemp. Probl. Ecol., 2018, vol. 11, no. 1, pp. 79–88.

    Article  Google Scholar 

  24. Kalugina, O.V., Mikhailova, T.A., Afanasyeva, L.V., Gurina, V.V., and Ivanova, M.V., Changes in the fatty acid composition of pine needle lipids under the aluminum smelter emissions, Ecotoxicology, 2021a, vol. 29, no. 4, pp. 1287–1289.

    Google Scholar 

  25. Kalugina, O.V., Mikhailova, T.A., Afanasyeva, L.V., and Shergina, O.V., Activity and isozyme composition of peroxidase in Scots pine (Pinus sylvestris L.) needles effected by technogenic emissions from various enterprises and vehicles, Sib. J. Life Sci. Agric., 2021b, vol. 13, no. 1, pp. 11–34.

    Google Scholar 

  26. Kasischke, E.S., Hyer, E.J., Novelli, P.C., Bruhwiler, L.P., French, N.H.F., Sukhinin, A.I., Hewson, J.H., and Stocks, B.J., Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cycles, 2005, vol. 19, p. GB1012.

    Article  ADS  Google Scholar 

  27. Kharuk, V.I. and Antamoshkina, O.A., Impact of silkmoth outbreak on taiga wildfires, Contemp. Probl. Ecol., 2017, vol. 10, no. 5, pp. 556–562.

    Article  Google Scholar 

  28. Kharuk, V.I., Im, S.T., Petrov, I.A., and Yagunov, M.N., Decline of dark coniferous stands in Baikal Region, Contemp. Probl. Ecol., 2016, vol. 9, no. 5, pp. 617–625.

    Article  Google Scholar 

  29. Kirdyanov, A.V., Krusic, P.J., Shishov, V.V., Vaganov, E.A., Fertikov, A.I., Myglan, V.S., Barinov, V.V., Browse, J., Esper, J., Ilyin, V.A., Knorre, A.A., Korets, M.A., Kukarskikh, V.V., Mashukov, D.A., Onuchin, A.A., Piermattei, A., Pimenov, A.V., Prokushkin, A.S., Ryzhkova, V.A., Shishikin, A.S., Smith, K.T., Taynik, A.V., Wild, M., Zorita, E., and Buntgen, U., Ecological and conceptual consequences of Arctic pollution, Ecol. Lett., 2020, vol. 23, pp. 1827–1837.

    Article  PubMed  Google Scholar 

  30. Kumar, V., Khare, T., Sharma, M., and Wani, S.H., ROS-induced signaling and gene expression in crops under salinity stress, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Singapore: Springer-Verlag, 2017, pp. 159–184.

    Google Scholar 

  31. Lassalle, G., Monitoring natural and anthropogenic plant stressors by hyperspectral remote sensing: Recommendations and guidelines based on a meta-review, Sci. Total Environ., 2021, vol. 788, p. 147758.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Lesnoi fond Rossii (po uchetu na 1 yanvarya 1998 goda) (Forest Fund of Russia (According to January 1, 1998), Moscow: VNIITslesresurs, 1999.

  33. Lichtenthaler, H.K. and Welburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 11, no. 6, pp. 591–592.

    Article  CAS  Google Scholar 

  34. Lukina, N.V. and Nikonov, V.V., Biokhimicheskie tsikly v lesakh severa v usloviyakh aerotekhnogennogo zagryazneniya (Biochemical Cycles in the Forests of the North Under Conditions of Aerotechnogenic Pollution), Apatity: Kol’sk. Nauchn. Tsentr, Ross. Akad. Nauk, 1996, part 1.

  35. McEnroe, N.A. and Helmisaari, H.-S., Decomposition of coniferous forest litter along a heavy metal pollution gradient, south-west Finland, Environ. Pollut., 2001, vol. 113, pp. 11–18.

    Article  CAS  PubMed  Google Scholar 

  36. Mikhailova, T.A., The physiological condition of pine trees in the Prebaikalia (East Siberia), Forest Pathol., 2000, no. 30, pp. 345–359.

  37. Mikhailova, T.A., The physiological condition of pine trees in the Prebaikalia (East Siberia), For. Pathol., 2000, no. 30, pp. 345–359.

  38. Mikhailova, T.A., Berezhnaya, N.S., Suvorova, G.G., Ignat’eva, O.V., and Shergina, O.V., Transformation of carbon assimilation in forest stands weakened by industrial emissions, Sib. Ekol. Zh., 2005, no. 4, pp. 745–751.

  39. Mikhailova, T.A., Berezhnaya, N.S., and Ignat’eva, O.V., Elementnyi sostav khvoi i morfofiziologicheskie parametry sosny obyknovennoi v usloviyakh tekhnogennogo zagryazneniya (Elemental Composition of Needles and Morphophysiological Parameters of Scots Pine under the Conditions of Technogenic Pollution), Pleshanov, A.S., Ed., Irkutsk: Inst. Geogr. Sib. Otd. Ross. Akad. Nauk, 2006.

    Google Scholar 

  40. Mikhailova, T.A., Pleshanov, A.S., and Afanasieva, L.V., Cartographic assessment of pollution of forest ecosystems on the Baikal natural territory by technogenic emissions, Geogr. Nat. Resour., 2008, vol. 29, no. 4, pp. 317–320.

    Article  Google Scholar 

  41. Mikhailova, T.A., Kalugina, O.V., and Shergina, O.V., Dynamics of the state of pine forests of Cisbaikalia under the influence of anthropogenic factors, Sib. Lesn. Zh., 2017, no. 1, pp. 44–55.

  42. Mitrofanov, E.M., Development of a methodology for geospatial analysis of forest vegetation degradation based on hyperspectral remote sensing data, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Moscow, 2013.

  43. Porter, L.J., Hrstich, L.N., and Chan, B.G., The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin, Phytochemistry, 1985, vol. 25, no. 1, pp. 223–230.

    Article  Google Scholar 

  44. Romashkin, D.Yu., Romashkina, I.V., Kalnin, V.V., Prorokov, A.A., and Karpov, A.D., Morphogenetic assessment of the biological stability of forest plantations under conditions of radioactive contamination, Lesn. Vestn., 2019, vol. 23, no. 2, pp. 84–91.

    Google Scholar 

  45. Sanasilva-Bericht 1997. Zustand und Gefährdung des Schweizer Waldes—eine Zwischenbilanz nach 15 Jahren Waldschadenforschung. Berichte der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, Brang, P., Ed., Birmensdorf: Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft, 1998, vol. 345.

  46. Brown, S., Narine, L.L., and Gilbert, J., Using airborne lidar, multispectral imagery, and field inventory data to estimate basal area, volume, and aboveground biomass in heterogeneous mixed species forests: A case study in Southern Alabama, Remote Sens., 2022, vol. 14, no. 11, p. 2708.

  47. Sanitarnye pravila v lesakh SSSR (Sanitary Rules in the Forests of the USSR), Moscow: Gosleskhoz SSSR, 1970.

  48. Schepashchenko, D.G., Shvidenko, A.Z., and Shalaev, V.S., Biologicheskaya produktivnost' i byudzhet ugleroda listvennichnykh lesov Severo-Vostoka Rossii (Biological Productivity and Carbon Budget of Larch Forests in the North-East of Russia), Moscow: Mosk. Gos. Univ. Lesa, 2008.

  49. Schulze, E.-D., Vygodskaya, N.N., Tchebakova, N.M., Czimczik, C.I., Kozlov, D.N., Lloyd, J., Mollicone, D., Parfenova, E., Sidorov, K.N., Varlagin, A.V., and Wirth, C., The eurosiberian transect: an introduction to the experimental region, Tellus, 2002, vol. 54, no. 5, pp. 421–428.

    Google Scholar 

  50. Shipunov, A., et al., Visual statistics. Use R. version 2016. http://ashipunov.info/shipunov/school/biol_240/en/.

  51. Shvidenko, A.Z., Vaganov, E.A., and Nilsson, S., Biospheric role of forests at the start of the third millennium: carbon budget and the Kyoto protocol, Sib. Ecol. Zh., 2003, no. 6, pp. 649–658.

  52. Skripal’shchikova, L.N. and Stasova, V.V., Bioindicative indicators of the development stability of plantings in disturbed landscapes, Sib. Lesn. Zh., 2014, no. 2, pp. 67–72.

  53. Suvorova, G.G. and Popova, E.V., Fotosinteticheskaya produktivnost' hvojnyh drevostoev Irkutskoj oblasti (Photosynthetic Productivity of Coniferous Forest Stands in the Irkutsk Region), Salyaev, R.K., Ed., Novosibirsk: Geo, 2015.

    Google Scholar 

  54. Takahashi, M., Feng, Z., Mikhailova, T.A., Kalugina, O.V., Shergina, O.V., Afanasieva, L.V., Jui Heng, R.K., Muhamad Abd Majid, N., and Sase, H., Air pollution monitoring and tree and forest decline in East Asia: A review, Sci. Total Environ., 2020, vol. 742, p. 140288

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Tarkhanov, S.N., Prozherina, N.A., and Konovalov, V.N., Lesnye ekosistemy basseina Severnoi Dviny v usloviyakh atmosfernogo zagryazneniya: diagnostika sostoyaniya (Forest Ecosystems of the Northern Dvina Basin under Conditions of Atmospheric Pollution: State Diagnostics), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2004.

  56. Tuzhilkina, V.V. and Plyusnina, S.N., Structural and functional changes in pine needles under conditions of aerotechnogenic pollution, Lesovedenie, 2020, no. 6, pp. 537–547.

  57. Vlasenko, V.E., Menshchikov, S.L., and Andreev, G.V., On the issue of studying the productivity of pine forests under conditions of regional industrial pollution, Lesn. Taksatsiya Lesoustroistvo, 2001, no. 1, pp. 145–147.

  58. Vremennaya metodika po uchetu sosnovykh nasazhdenii, podverzhennykh vliyaniyu promyshlennykh vybrosov (Temporary Methodology for Accounting for Pine Plantations Affected by Industrial Emissions), Moscow, 1986.

  59. Yarmishko, V.T., Gorshkov, V.V., and Stavrova, N.I., Vital structure of Pinus sylvestris L. in forest communities with different degree and type of anthropogenic disturbance (Kola Peninsula), Rastit. Resur., 2003, vol. 39, no. 4, pp. 1–18.

    Google Scholar 

  60. Zakharov, V.M., Kryazheva, N.G., Dmitriev, S.G., and Trofimov, I.E., Assessment of possible changes in the state of populations due to climate change (on the example of a study of the stability of the development of silver birch), Usp. Sovrem. Biol., 2011, vol. 131, no. 4, pp. 425–430.

    Google Scholar 

  61. Zaprometov, M.N., Fenol’nye soedineniya: rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds: Distribution, Metabolism and Functions in Plants), Moscow: Nauka, 1993.

  62. Zhidkov, A.N. and Kozhenkov, L.L., Environmental problems of forest protection, Lesokhoz. Inf., 2014, no. 4, pp. 25–32.

  63. Zlobin, Yu.A., Printsipy i metody izucheniya tsenoticheskikh populyatsii rastenii (Principles and Methods for Studying Coenotic Plant Populations), Kazan: Kazan. Univ., 1989.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kalugina.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalugina, O.V., Afanasyeva, L.V. Development of a Diagnostic Scale for Assessing the Vital State of Pine Stands under Conditions of Technogenic Pollution by Emissions from a Large Aluminum Smelter. Contemp. Probl. Ecol. 17, 112–124 (2024). https://doi.org/10.1134/S1995425524010062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425524010062

Keywords:

Navigation