Skip to main content
Log in

A Guided Tour of the Soil Seed Banks

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The soil seed bank could be viewed as an optimisation of the chances of plants to meet favourable conditions in time and space. Owing to the large number of publications and the field’s complexity, available reviews do not cover the entire field. My objective was to produce a synthesis. Determination of the soil seed bank needs careful planning of sampling because of variations in soil depth and clumped distributions. Sample composition is determined from plantlets coming from germinated seeds after exposure to appropriate conditions or directly from seeds after their separation from soil particles. Seed longevity varies from months to decades and depends on desiccation resistance, defences against predators and germination control, notably dormancy. Dormancy characterisation and alleviation factors allow to understand species’ strategies in ecosystems. In agricultural soils, weeds challenge future cultures. Research objectives are often to exhaust their seed banks before crop emergence by reducing seed production, inactivating germination, removing weeds before seed maturation, and controlling the harvest. In natural ecosystems, climax species tend to produce shorter-lived seeds compared to pioneered ones. The soil seed bank may help in restoring degraded vegetation but the similarity with the aboveground vegetation is low. Disturbances may increase or decrease the soil seed bank diversity. Restoration may often rely on natural recruitment from undisturbed areas or on artificial translocation. I emphasise the need to integrate soil seed bank knowledge into dynamic vegetation models, which generally lacks most of the soil seed bank features, while the future distribution of the plant species is one of the main questions in this climate change era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Achmon, Y., Fernández-Bayo, J.D., Hernandez, K., McCurry, D.G., Harrold, D.R., Su, J., Dahlquist-Willard, R.M., Stapleton, J.J., VanderGheynst, J.S., and Simmons, C.W., Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments, Pest Manage. Sci., 2017, vol. 73, pp. 862–873. https://doi.org/10.1002/ps.4354

    Article  CAS  Google Scholar 

  2. Aliyu, B., Adamu, H., Moltchanova, E., Forget, P.-M., and Chapman, H., The interplay of habitat and seed type on scatterhoarding behavior in a fragmented Afromontane forest landscape, Biotropica, 2014, vol. 46, pp. 264–267. https://doi.org/10.1111/btp.12110

    Article  Google Scholar 

  3. Bakker, J.P., Poschlod, P., Strykstra, R.J., Bekker, R.M., and Thompson, K., Seed banks and seed dispersal: important topics in restoration ecology, Acta Bot. Neerl., 1996a, vol. 45, pp. 461–490. https://doi.org/10.1111/j.1438-8677.1996.tb00806.x

    Article  Google Scholar 

  4. Bakker, J.P., Poschlod, P., Strykstra, R.J., Bekker, R.M., and Thompson, N.K., Seed banks and seed dispersal: important topics in restoration ecology, Acta Bot. Neerl., 1996b, vol. 45, pp. 461–490. https://doi.org/10.1111/j.1438-8677.1996.tb00806.x

    Article  Google Scholar 

  5. Baskin, J.M. and Baskin, C.C., Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles, Seed Sci. Res., 2000, vol. 10, pp. 409–413. https://doi.org/10.1017/S0960258500000453

    Article  Google Scholar 

  6. Baskin, J.M. and Baskin, C.C., A classification system for seed dormancy, Seed Sci. Res., 2004, vol. 14, pp. 1–16. https://doi.org/10.1079/SSR2003150

    Article  ADS  Google Scholar 

  7. Baskin, C.C. and Baskin, J.M., The natural history of soil seed banks of arable land, Weed Sci., 2006, vol. 54, pp. 549–557. https://doi.org/10.1614/WS-05-034R.1

    Article  CAS  Google Scholar 

  8. Baskin, C.C. and Baskin, J.M., Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination, Elsevier, Amsterdam, 2014.

    Google Scholar 

  9. Baskin, C. and Baskin, J., Plant Regeneration from Seeds: A Global Warming Perspective, Cambridge Univ. Press, 2022, pp. 1–312

    Google Scholar 

  10. Berjak, P. and Pammenter, N.W., From Avicennia to Zizania: Seed recalcitrance in perspective, Ann. Bot., 2008, vol. 101, pp. 213–228. https://doi.org/10.1093/aob/mcm168

    Article  PubMed  Google Scholar 

  11. Bezerra, J.S., Arroyo-Rodríguez, V., Tavares, J.M., Leal, A., Leal, I.R., and Tabarelli, M., Drastic impoverishment of the soil seed bank in a tropical dry forest exposed to slash-and-burn agriculture, For. Ecol. Manage., 2022, vol. 513, p. 120185. https://doi.org/10.1016/j.foreco.2022.120185

    Article  Google Scholar 

  12. Boissier, O., Feer, F., Henry, P.Y., and Forget, P.M., Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level, Ecol. Appl., 2020, vol. 30, p. e02086. https://doi.org/10.1002/eap.2086

    Article  PubMed  Google Scholar 

  13. Buisson, E., De Almeida, T., Durbecq, A., Arruda, A.J., Vidaller, C., Alignan, J.F., Toma, T.S.P., Hess, M.C.M., Pavon, D., Isselin-Nondedeu, F., Jaunatre, R., Moinardeau, C., Young, T.P., Mesléard, F., Dutoit, T., Blight, O., and Bischoff, A., Key issues in Northwestern Mediterranean dry grassland restoration, Restor. Ecol., 2021, vol. 29, p. e13258. https://doi.org/10.1111/rec.13258

    Article  Google Scholar 

  14. Caughlin, T.T., Elliott, S., and Lichstein, J.W., When does seed limitation matter for scaling up reforestation from patches to landscapes?, Ecol. Appl., 2016, vol. 26, pp. 2437–2448. https://doi.org/10.1002/eap.1410

    Article  PubMed  Google Scholar 

  15. Cazetta, E. and Fahrig, L., The effects of human-altered habitat spatial pattern on frugivory and seed dispersal: a global meta-analysis, Oikos, 2022, vol. 2022. https://doi.org/10.1111/oik.08288

  16. Chen, M., Rafique, R., Asrar, G.R., Bond-Lamberty, B., Ciais, P., Zhao, F., Reyer, C.P.O., Ostberg, S., Chang, J., Ito, A., Yang, J., Zeng, N., Kalnay, E., West, T., Leng, G., Francois, L., Munhoven, G., Henrot, A., Tian, H., Pan, S., Nishina, K., Viovy, N., Morfopoulos, C., Bett-s, R., Schaphoff, B., Steinkamp, J., and Hickler, T., Regional contribution to variability and trends of global gross primary productivity, Environ. Res. Lett., 2017, vol. 12, p. 105005. https://doi.org/10.1088/1748-9326/aa8978

    Article  ADS  CAS  Google Scholar 

  17. Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., and Guillemin, J.P., Bioherbicides: Dead in the water? A review of the existing products for integrated weed management, Crop. Prot., 2016, vol. 87, pp. 44–49. https://doi.org/10.1016/j.cropro.2016.04.016

    Article  CAS  Google Scholar 

  18. Csontos, P., Seed banks: Ecological definitions and sampling considerations, Community Ecol., 2007, vol. 8, pp. 75–85. https://doi.org/10.1556/ComEc.8.2007.1.10

    Article  Google Scholar 

  19. Cury, R.T.S., Montibeller-Santos, C., Balch, J.K., Brando, P.M., and Torezan, J.M.D., Effects of fire frequency on seed sources and regeneration in southeastern Amazonia, Front. For. Global Change, 2020, vol. 3, p. 82. https://doi.org/10.3389/ffgc.2020.00082

    Article  Google Scholar 

  20. Daïnou, K., Bauduin, A., Bourland, N., Gillet, J.F., Fétéké, F., and Doucet, J.L., Soil seed bank characteristics in cameroonian rainforests and implications for post-logging forest recovery, Ecol. Eng., 2011, vol. 37, pp. 1499–1506. https://doi.org/10.1016/j.ecoleng.2011.05.004

    Article  Google Scholar 

  21. Dalling, J.W., Davis, A.S., Arnold, A.E., Sarmiento, C., and Zalamea, P.C., Extending plant defense theory to seeds, Annu. Rev. Ecol., Evol., Syst., 2020, vol. 51, pp. 123–141. https://doi.org/10.1146/annurev-ecolsys-012120-115156

    Article  Google Scholar 

  22. Davis, A.S., Fu, X., Schutte, B.J., Berhow, M.A., and Dalling, J.W., Interspecific variation in persistence of buried weed seeds follows trade-offs among physiological, chemical, and physical seed defenses, Ecol. Evol., 2016, vol. 6, pp. 6836–6845. https://doi.org/10.1002/ece3.2415

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dell, B., Structure and function of the strophiolar plug in seeds of Albizia lophantha, Am. J. Bot., 1980, vol. 67, pp. 556–563.

    Article  Google Scholar 

  24. Di Sacco, A., Hardwick, K.A., Blakesley, D., Brancalion, P.H.S., Breman, E., Cecilio Rebola, L., Chomba, S., Dixon, K., Elliott, S., Ruyonga, G., Shaw, K., Smith, P., Smith, R.J., and Antonelli, A., Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits, Global Change Biol., 2021, vol. 27, pp. 1328–1348. https://doi.org/10.1111/gcb.15498

    Article  ADS  CAS  Google Scholar 

  25. Dury, M., Hambuckers, A., Warnant, P., Henrot, A., Favre, E., Ouberdous, M., and François, L., Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity, iForest, 2011, vol. 4, pp. 82–99. https://doi.org/10.3832/ifor0572-004

    Article  Google Scholar 

  26. Dury, M., Merten,s L., Fayolle, A., Verbeeck, H., Hambuckers, A., and François, L., Refining species traits in a dynamic vegetation model to project the impacts of climate change on tropical trees in Central Africa, Forests, 2018, vol. 9. https://doi.org/10.3390/f9110722

  27. Ellsworth, L.M. and Boone Kauffman, J., Seedbank responses to spring and fall prescribed fire in mountain big sagebrush ecosystems of differing ecological condition at Lava Beds National Monument, California, J. Arid. Environ., 2013, vol. 96, pp. 1–8. https://doi.org/10.1016/j.jaridenv.2013.04.001

    Article  ADS  Google Scholar 

  28. Evrard, Q., Hardy, O.J., Tagg, N., and Doucet, J.L., Removal and predation of aril-covered seeds: the case of Afzelia bipindensis (Fabaceae – Detarioidae), Plant Ecol. Evol., 2019, vol. 152, pp. 460–469. https://doi.org/10.5091/plecevo.2019.1552

    Article  Google Scholar 

  29. Fahrig, L., Arroyo-Rodríguez, V., Bennett, J.R., Boucher-Lalonde, V., Cazetta, E., Currie, D.J., Eigenbrod, F., Ford, A.T., Harrison, S.P., Jaeger, J.A.G., Koper, N., Martin, A.E., Martin, J.L., Metzger, J.P., Morrison, P., Rhodes, J.R., Saunders, D.A., Simberloff, D., Smith, A.C., Tischendorf, L., Vellend, M., and Watling, J.I., Is habitat fragmentation bad for biodiversity?, Biol. Conserv., 2019, vol. 230, pp. 179–186. https://doi.org/10.1016/j.biocon.2018.12.026

    Article  Google Scholar 

  30. Farnsworth, E., The ecology and physiology of viviparous and recalcitrant seeds, Annu. Rev. Ecol. Syst., 2000, vol. 31, pp. 107–138.

    Article  Google Scholar 

  31. Fernández-Pascual, E., SylvanSeeds, a seed germination database for temperate deciduous forests, J. Veg. Sci., 2021, vol. 32, p. e12960. https://doi.org/10.1111/jvs.12960

    Article  Google Scholar 

  32. Flores, B.M. and Holmgren, M., Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation, J. Ecol., 2021, vol. 109, pp. 3473–3486. https://doi.org/10.1111/1365-2745.13769

    Article  Google Scholar 

  33. Fontaine, C., Dendoncker, N., De Vreese, R., Jacquemin, I., Marek, A., Van Herzele, A., Devillet, G., Mortelmans, D., and François, L., Towards participatory integrated valuation and modelling of ecosystem services under land-use change, J. Land Use Sci., 2014, vol. 9, pp. 278–303. https://doi.org/10.1080/1747423X.2013.786150

    Article  Google Scholar 

  34. François, L. and Hambuckers, A., Modeling past plant species’ distributions in mountainous areas: A way to improve our knowledge of future climate change impacts?, PAGES, 2020, vol. 28, p. 16.

    Google Scholar 

  35. Fronzek, S., Pirttioja, N., Carter, T.R., Bindi, M., Hoffmann, H., Palosuo, T., Ruiz-Ramos, M., Tao, F., Trnka, M., Acutis, M., Asseng, S., Baranowski, P., Basso, B., Bodin, P., Buis, S., Cammarano, D., Deligios, P., Destain, M.F., Dumont, B., Ewert, F., Ferrise, R., François, L., Gaiser, T., Hlavinka, P., Jacquemin, I., Kersebaum, K.C., Kollas, C., Krzyszczak, J., Lorite, I.J., Minet, J., Minguez, M.I., Montesino, M., Moriondo, M., Müller, C., Nendel, C., Öztürk, I., Perego, A., Rodríguez, A., Ruane, A.C., Ruget, F., Sanna, M., Semenov, M.A., Slawinski, C., Stratonovitch, P., Supit, I., Waha, K., Wang, E., Wu, L., Zhao, Z., and Rötter, R.P., Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change, Agric. Syst., 2018, vol. 159, pp. 209–224. https://doi.org/10.1016/j.agsy.2017.08.004

    Article  Google Scholar 

  36. Gama-Arachchige, N.S., Baskin, J.M., Geneve, R.L., and Baskin, C.C., Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes, Ann. Bot., 2013, vol. 112, pp. 69–84. https://doi.org/10.1093/aob/mct094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gasperini, C., Carrari, E., Govaert, S., Meeussen, C., De Pauw, K., Plue, J., Sanczuk, P., Vanneste, T., Vangan-sbeke, P., Jacopetti, G., De Frenne, P., and Selvi, F., Edge effects on the realised soil seed bank along microclimatic gradients in temperate European forests, Sci. Total Environ., 2021, vol. 798, p. 149373. https://doi.org/10.1016/j.scitotenv.2021.149373

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Gasperini, C., Bollmann, K., Brunet, J., Cousins, S.A.O., Decocq, G., De Pauw, K., Diekmann, M., Govaert, S., Graae, B.J., Hedwall, P.O., Iacopetti, G., Lenoir, J., Lindmo, S., Meeussen, C., Orczewska, A., Ponette, Q., Plue, J., Sanczuk, P., Spicher, F., Vanneste, T., Vangansbeke, P., Zellweger, F., Selvi, F., and Frenne, P.D., Soil seed bank responses to edge effects in temperate European forests, Global Ecol. Biogeogr., 2022, vol. 31, pp. 1877–1893. https://doi.org/10.1111/geb.13568

    Article  Google Scholar 

  39. Gavrilitchenko, N., Gazagne, E., Vandewalle, N., Delcourt, J., and Hambuckers, A., CoFee-L: A model of animal displacement in large groups combining cohesion maintenance, feeding area search and transient leadership, Animals, 2022, vol. 12, p. 2412. https://doi.org/10.3390/ani12182412

    Article  PubMed Central  Google Scholar 

  40. Gazagne, E., Pitance, J.-L., Savini, T., Huynen, M.-C., Poncin, P., Brotcorne, F., and Hambuckers, A., Seed shadows of Northern Pigtailed Macaques within a degraded forest fragment, Thailand, Forests, 2020, vol. 11, p.1184. https://doi.org/10.3390/f11111184

    Article  Google Scholar 

  41. Gioria, M. and Pyšek, P., The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities, BioScience, 2015, vol. 66, pp. 40–53. https://doi.org/10.1093/biosci/biv165

    Article  Google Scholar 

  42. Gómez-González, S. and Cavieres, L.A., Litter burning does not equally affect seedling emergence of native and alien species of the Mediterranean-type Chilean matorral, Int. J. Wildland Fire, 2009, vol. 18, pp. 213–221. https://doi.org/10.1071/WF07074

    Article  Google Scholar 

  43. Hambuckers, J., Dauvrin, A., Trolliet, F., Evrard, Q., Forget, P.M., and Hambuckers, A., How can seed removal rates of zoochoric tree species be assessed quickly and accurately?, For. Ecol. Manage., 2017, vol. 403, pp. 152–160. https://doi.org/10.1016/j.foreco.2017.07.042

    Article  Google Scholar 

  44. Hambuckers, A., Trolliet, F., Simon, A., Cazetta, E., and Rocha-Santos, L., Seed removal rates in forest remnants respond to forest loss at the landscape scale, Forests, 2020, vol. 11, no. 11, p. 1144. https://doi.org/10.3390/f11111144

    Article  Google Scholar 

  45. Hambuckers, A., Trolliet, F., Dury, M., Henrot, A.J., Porteman, K., Hasnaoui, Y.E., Bulcke, J.V.D., Mil, T.D., Remy, C.C., Cheddadi, R., and François, L., Towards a more realistic simulation of plant species with a dynamic vegetation model using field-measured traits: The Atlas cedar, a case study, Forests, 2022, vol. 13. https://doi.org/10.3390/f13030446

  46. Hilhorst, H.W.M. and Karssen, C.M., Effect of chemical environment on seed germination, in The Ecology of Regeneration in Plant Communities, Fenner, M., Ed., Seeds, Wallingford: CABI Int., 2000, pp. 293–309

  47. Honnay, O., Bossuyt, B., Verheyen, K., Butaye, J., Jacquemyn, H., and Hermy, M., Ecological perspectives for the restoration of plant communities in European temperate forests, Biodiversity Conserv., 2002, vol. 11, pp. 213–242. https://doi.org/10.1023/A:1014531011060

    Article  Google Scholar 

  48. Jacquemin, I., Berckmans, J., Henrot, A.-J., Dury, M., Tyc-hon, B., Hambuckers, A., Hamdi, R., and François, L., Using the CARAIB dynamic vegetation model to simulate crop yields in Belgium: validation and projections for the 2035 horizon, Geo-Eco-Trop, 2021, vol. 44, pp. 541–552.

    Google Scholar 

  49. Janská, A., Pecková, E., Sczepaniak, B., Smýkal, P., and Soukup, A., The role of the testa during the establishment of physical dormancy in the pea seed, Ann. Bot., 2019, vol. 123, pp. 815–829. https://doi.org/10.1093/aob/mcy213

    Article  CAS  PubMed  Google Scholar 

  50. Jernigan, A.B., Caldwell, B.A., Cordeau, S., DiTommaso, A., Drinkwater, L.E., Mohler, C.L., and Ryan, M.R., Weed abundance and community composition following a long-Term organic vegetable cropping systems experiment, Weed Sci., 2017, vol. 65, pp. 639–649. https://doi.org/10.1017/wsc.2017.33

    Article  Google Scholar 

  51. Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I.C., Leadley, P., Tautenhahn, S., Werner, G.D.A., Aakala, T., Abedi, M., Acosta, A.T.R., Adamidis, G.C., Adamson, K., Aiba, M., Albert, C.H., Alcántara, J.M., A-lcázar, C.C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., Amoroso, M.M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D.M.G., Ashman, T.-L., Asmara, D.H., Asner, G.P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup-Spohr, L., Bahalkeh, K., Bahn, M., Baker, T., Baker, W.J., Bakker, J.P., Baldocchi, D., Baltzer, J., Banerjee, A., Baranger, A., Barlow, J., Barneche, D.R., Baruch, Z., Bastianelli, D., Battles, J., Bauerle, W., Bauters, M., Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, R., Belfry, G., Belluau, M., Beloiu, M., Benavides, R., Benomar, L., Berdugo-Lattke, M.L., Berenguer, E., Bergamin, R., Bergmann, J., Bergmann Carlucci, M., Berner, L., Bernhardt-Römermann, M., Bigler, C., Bjorkman, A.D., Blackman, C., Blanco, C., Blonder, B., Blumenthal, D., Bocanegra-González, K.T., Boeckx, P., Bohlman, S., Böhning-Gaese, K., Boisvert-Marsh, L., Bond, W., Bond-Lamberty, B., Boom, A., Boonman, C.C.F., Bordin, K., Boughton, E.H., Boukili, V., Bowman, D.M.J.S., Bravo, S., Brendel, M.R., Broadley, M.R., Brown, K.A., Bruelheide, H., Brumnich, F., Bruun, H.H., Bruy, D., Buchanan, S.W., Bucher, S.F., Buchmann, N., Buitenwerf, R., Bunker, D.E., Bürger, J., Burrascano, S., Burslem, D.F.R.P., Butterfield, B.J., Byun, C., Marques, M., Scalon, M.C., Caccianiga, M., Cadotte, M., Cailleret, M., Camac, J., Camarero, J.J., Campany, C., Campetella, G., Campos, J.A., Cano-Arboleda, L., Canullo, R., Carbognani, M., Carvalho, F., Casanoves, F., Castagneyrol, B., Catford, J.A., Cavender-Bares, J., Cerabolini, B.E.L., Cervellini, M., Chacón-Madrigal, E., Chapin, K., Chapin, F.S., Chelli, S., Chen, S.-C., Chen, A., Cherubini, P., Chianucci, F., Choat, B., Chung, K.-S., Chytrý, M., Ciccarelli, D., Coll, L., Collins, C.G., Conti, L., Coomes, D., Cornelissen, J.H.C., Cornwell, W.K., Corona, P., Coyea, M., Craine, J., Craven, D., Cromsigt, J.P.G.M., Csecserits, A., Cufar, K., Cuntz, M., da Silva, A.C., Dahlin, K.M., Dainese, M., Dalke, I., Dalle Fratte, M., Dang-Le, A.T., Danihelka, J., Dannoura, M., Dawson, S., de Beer, A.J., de Frutos, A., de Long, J.R., Dechant, B., Delagrange, S., Delpierre, N., Derroire, G., Dias, A.S., Diaz-Toribio, M.H., Dimitrakopoulos, P.G., Dobrowolski, M., Doktor, D., Dřevojan, P., Dong, N., Dransfield, J., Dressler, S., Duarte, L., Ducouret, E., Dullinger, S., Durka, W., Duursma, R., Dymova, O., E-Vojtkó, A., Eckstein, R.L., Ejtehadi, H., Elser, J., Emilio, T., Engemann, K., Erfanian, M.B., Erfmeier, A., Esquivel-Muelbert, A., Esser, G., Estiarte, M., Domingues, T.F., Fagan, W.F., Fagúndez, J., Falster, D.S., Fan, Y., Fang, J., Farris, E., Fazlioglu, F., Feng, Y., Fernandez-Mendez, F., Ferrara, C., Ferreira, J., Fidelis, A., Finegan, B., Firn, J., Flowers, T.J., Flynn, D.F.B., Fontana, V., Forey, E., Forgiarini, C., François, L., Frangipani, M., Frank, D., Frenette-Dussault, C., Freschet, G.T., Fry, E.L., Fyllas, N.M., Mazzochini, G.G., Gachet, S., Gallagher, R., Ganade, G., Ganga, F., García-Palacios, P., Gargaglione, V., Garnier, E., Garrido, J.L., de Gasper, A.L., Gea-Izquierdo, G., Gibson, D., Gillison, A.N., Giroldo, A., Glasenhardt, M.-C., Gleason, S., Gliesch, M., Goldberg, E., Göldel, B., Gonzalez-Akre, E., Gonzalez-Andujar, J.L., González-Melo, A., González-Robles, A., Graae, B.J., Granda, E., Graves, S., Green, W.A., Gregor, T., Gross, N., Guerin, G.R., Günther, A., Gutiérrez, A.G., Haddock, L., Haines, A., Hall, J., Hambuckers, A., Han, W., Harrison, S.P., Hattingh, W., Hawes, J.E., He, T., He, P., Heberling, J.M., Helm, A., Hempel, S., Hentschel, J., Hérault, B., Hereş, A.-M., Herz, K., Heuertz, M., Hickler, T., Hietz, P., Higuchi, P., Hipp, A.L., Hirons, A., Hock, M., Hogan, J.A., Holl, K., Honnay, O., Hornstein, D., Hou, E., Hough-Snee, N., Hovstad, K.A., Ichie, T., Igić, B., Illa, E., Isaac, M., Ishihara, M., Ivanov, L., Ivanova, L., Iversen, C.M., Izquierdo, J., Jackson, R.B., Jackson, B., Jactel, H., Jagodzinski, A.M., Jandt, U., Jansen, S., Jenkins, T., Jentsch, A., Jespersen, J.R.P., Jiang, G.-F., Johansen, J.L., Johnson, D., Jokela, E.J., Joly, C.A., Jordan, G.J., Joseph, G.S., Junaedi, D., Junker, R.R., Justes, E., Kabzems, R., Kane, J., Kaplan, Z., Kattenborn, T., Kavelenova, L., Kearsley, E., Kempel, A., Kenzo, T., Kerkhoff, A., Khalil, M.I., Kinlock, N.L., Kissling, W.D., Kitajima, K., Kitzberger, T., Kjøller, R., Klein, T., Kleyer, M., Klimešová, J., Klipel, J., Kloeppel, B., Klotz, S., Knops, J.M.H., Kohyama, T., Koike, F., Kollmann, J., Komac, B., Komatsu, K., König, C., Kraft, N.J.B., Kramer, K., Kreft, H., Kühn, I., Kumarathunge, D., Kuppler, J., Kurokawa, H., Kurosawa, Y., Kuyah, S., Laclau, J.-P., Lafleur, B., Lallai, E., Lamb, E., Lamprecht, A., Larkin, D.J., Laughlin, D., le Bagousse-Pinguet, Y., le Maire, G., le Roux, P.C., le Roux, E., Lee, T., Lens, F., Lewis, S.L., Lhotsky, B., Li, Y., Li, X., Lichstein, J.W., Liebergesell, M., Lim, J.Y., Lin, Y.-S., Linares, J.C., Liu, C., Liu, D., Liu, U., Livingstone, S., Llusià, J., Lohbeck, M., López-García, Á., Lopez-Gonzalez, G., Lososová, Z., Louault, F., Lukács, B.A., Lukeš, P., Luo, Y., Lussu, M., Ma, S., Pereira, C.M.R., Mack, M., Maire, V., Mäkelä, A., Mäkinen, H., Malhado, A.C.M., Mallik, A., Manning, P., Manzoni, S., Marchetti, Z., Marchino, L., Marcilio-Silva, V., Marcon, E., Marignani, M., Markesteijn, L., Martin, A., Martínez-Garza, C., Martínez-Vilalta, J., Mašková, T., Mason, K., Mason, N., Massad, T.J., Masse, J., Mayrose, I., McCarthy, J., McCormack, M.L., McCulloh, K., McFadden, I.R., McGill, B.J., McPartland, M.Y., Medeiros, J.S., Medlyn, B., Meerts, P., Mehrabi, Z., Meir, P., Melo, F.P.L., Mencuccini, M., Meredieu, C., Messier, J., Mészáros, I., Metsaranta, J., Michaletz, S.T., Michelaki, C., Migalina, S., Milla, R., Miller, J.E.D., Minden, V., Ming, R., Mokany, K., Moles, A.T., Molnár, V.A., Molofsky, J., Molz, M., Montgomery, R.A., Monty, A., Moravcová, L., Moreno-Martínez, A., Moretti, M., Mori, A.S., Mori, S., Morris, D., Morrison, J., Mucina, L., Mueller, S., Muir, C.D., Müller, S.C., Munoz, F., Myers-Smith, I.H., Myster, R.W., Nagano, M., Naidu, S., Narayanan, A., Natesan, B., Negoita, L., Nelson, A.S., Neuschulz, E.L., Ni, J., Niedrist, G., Nieto, J., Niinemets, Ü., Nolan, R., Nottebrock, H., Nouvellon, Y., Novakovskiy, A., The Nutrient, N., Nystuen, K.O., O’Grady, A., O’Hara, K., O’Reilly-Nugent, A., Oakley, S., Oberhuber, W., Ohtsuka, T., Oliveira, R., Öllerer K, Olson ME, Onipchenko V, Onoda Y, Onstein RE, Ordonez JC, Osada N, Ostonen I, Ottaviani, G., Otto, S., Overbeck, G.E., Ozinga, W.A., Pahl, A.T., Paine, C.E.T., Pakeman, R.J., Papageorgiou, A.C., Parfionova, E., Pärtel, M., Patacca, M., Paula, S., Paule, J., Pauli, H., Pausas, J.G., Peco, B., Penuelas, J., Perea, A., Peri, P.L., Petisco-Souza, A.C., Petraglia, A., Petritan, A.M., Phillips, O.L., Pierce, S., Pillar, V.D., Pisek, J., Pomogaybin, A., Poorter, H., Portsmuth, A., Poschlod, P., Potvin, C., Pounds, D., Powell, A.S., Power, S.A., Prinzing, A., Puglielli, G., Pyšek, P., Raevel, V., Rammig, A., Ransijn, J., Ray, C.A., Reich, P.B., Reichstein, M., Reid, D.E.B., Réjou-Méchain, M., de Dios, V.R., Ribeiro, S., Richardson, S., Riibak, K., Rillig, M.C., Riviera, F., Robert, E.M.R., Roberts, S., Robroek, B., Roddy, A., Rodrigues, A.V., Rogers, A., Rollinson, E., Rolo, V., Römermann, C., Ronzhina, D., Roscher, C., Rosell, J.A., Rosenfield, M.F., Rossi, C., Roy, D.B., Royer-Tardif, S., Rüger, N., Ruiz-Peinado, R., Rumpf, S.B., Rusch, G.M., Ryo, M., Sack, L., Saldaña, A., Salgado-Negret, B., Salguero-Gomez, R., Santa-Regina, I., Santacruz-García, A.C., Santos, J., Sardans, J., Schamp, B., Scherer-Lorenzen, M., Schleuning, M., Schmid, B., Schmidt, M., Schmitt, S., Schneider, J.V., Schowanek, S.D., Schrader, J., Sc-hrodt, F., Schuldt, B., Schurr, F., Selaya Garvizu, G., Semchenko, M., Seymour, C., Sfair, J.C., Sharpe, J.M., Sheppard, C.S., Sheremetiev, S., Shiodera, S., Shipley, B., Shovon, T.A., Siebenkäs, A., Sierra, C., Silva, V., Silva, M., Sitzia, T., Sjöman, H., Slot, M., Smith, N.G., Sodhi, D., Soltis, P., Soltis, D., Somers, B., Sonnier, G., Sørensen, M.V., Sosinski, Jr.E.E., Soudzilovskaia, N.A., Souza, A.F., Spasojevic, M., Sperandii, M.G., Stan, A.B., Stegen, J., Steinbauer, K., Stephan, J.G., Sterck, F., Stojanovic, D.B., Strydom, T., Suarez, M.L., Svenning, J.-C., Svitková, I., Svitok, M., Svoboda, M., Swaine, E., Swenson, N., Tabarelli, M., Takagi, K., Tappeiner, U., Tarifa, R., Tauugourdeau, S., Tavsanoglu, C., te Beest, M., Tedersoo, L., Thiffault, N., Thom, D., Thomas, E., Thompson, K., Thornton, P.E., Thuiller, W., Tichý, L., Tissue, D., Tjoelker, M.G., Tng, D.Y.P., Tobias, J., Török, P., Tarin, T., Torres-Ruiz, J.M., Tóthmérész, B., Treurnicht, M., Trivellone, V., Trolliet, F., Trotsiuk, V., Tsakalos, J.L., Tsiripidis, I., Tysklind, N., Umehara, T., Usoltsev, V., Vadeboncoeur, M., Vaezi, J., Valladares, F., Vamosi, J., van Bodegom, P.M., van Breugel, M., van Cleemput, E., van de Weg, M., van der Merwe, S., van der Plas, F., van der Sande, M.T., van Kleunen, M., van Meerbeek, K., Vanderwel, M., Vanselow, K.A., Vårhammar, A., Varone, L., Vasquez Valderrama, M.Y., Vassilev, K., Vellend, M., Veneklaas, E.J., Verbeeck, H., Verheyen, K., Vibrans, A., Vieira, I., Villacís, J., Violle, C., Vivek, P., Wagner, K., Waldram, M., Waldron, A., Walker, A.P., Waller, M., Walther, G., Wang, H., Wang, F., Wang, W., Watkins, H., Watkins, J., Weber, U., Weedon, J.T., Wei, L., Weigelt, P., Weiher, E., Wells, A.W., Wellstein, C., Wenk, E., Westoby, M., Westwood, A., White, P.J., Whitten, M., Williams, M., Winkler, D.E., Winter, K., Womack, C., Wright, I.J., Wright, S.J., Wright, J., Pinho, B.X., Ximenes, F., Yamada, T., Yamaji, K., Yanai, R., Yankov, N., Yguel, B., Zanini, K.J., Zanne, A.E., Zelený, D., Zhao, Y.-P., Zheng, J., Zheng, J., Ziemińska, K., Zirbel, C.R., Zizka, G., Zo-Bi, I.C., Zotz, G., and Wirth, C., TRY plant trait database – enhanced coverage and open access, Global Change Biol., 2020, vol. 26, pp. 119–188. https://doi.org/10.1111/gcb.14904

    Article  ADS  Google Scholar 

  52. Korres, N.E., Burgos, N.R., Travlos, I., Vurro, M., Gitsopoulos, T.K., Varanasi, V.K., Duke, S.O., Kudsk, P., Brabham, C., Rouse, C.E., and Salas-Perez, R., New directions for integrated weed management: Modern technologies, tools and knowledge discovery, Advances in Agronomy, Sparks, D.L., Ed., 2019, pp. 243–319

  53. Kruse, S., Gerdes, A., Kath, N.J., and Herzschuh, U., Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0, Geosci. Model Dev., 2018, vol. 11, pp. 4451–4467. https://doi.org/10.5194/gmd-11-4451-2018

    Article  ADS  Google Scholar 

  54. Kubalek, R., Granatstein, D., Collins, D., and Miles, C., Review of tarping and a case Study on small-scale organic farms, HortTechnology, 2022, vol. 32, pp. 119–128. https://doi.org/10.21273/HORTTECH04991-21

    Article  Google Scholar 

  55. Long, R.L., Gorecki, M.J., Renton, M., Scott, J.K., Colville, L., Goggin, DE., Commander, L.E., Westcott, D.A., Cherry, H., and Finch-Savage, W.E., The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise, Biol. Rev., 2015, vol. 90, pp. 31–59. https://doi.org/10.1111/brv.12095

    Article  PubMed  Google Scholar 

  56. Ma, M., Collins, S.L., Ratajczak, Z., and Du, G., Soil seed banks, alternative stable state theory, and ecosystem resilience, BioScience, 2021, vol. 71, pp. 697–707. https://doi.org/10.1093/biosci/biab011

    Article  Google Scholar 

  57. Mahé, I., Cordeau, S., Bohan, D.A., Derrouch, D., Dessaint, F., Millot, D., and Chauvel, B., Soil seedbank: Old methods for new challenges in agroecology?, Ann. Appl. Biol., 2021, vol. 178, pp. 23–38. https://doi.org/10.1111/aab.12619

    Article  Google Scholar 

  58. Malhi, Y., Gardner, T.A., Goldsmith, G.R., Silman, M.R., and Zelazowski, P., Tropical forests in the anthropocene, Annu. Rev. Environ. Resour., 2014, vol. 39, pp. 125–159. https://doi.org/10.1146/annurev-environ-030713-155141

    Article  Google Scholar 

  59. Mall, U. and Singh, G.S., Soil seed bank dynamics: History and ecological significance in sustainability of different ecosystems, in Environment and Sustainable Development, Fulekar, M.H., Pathak, B., and Kale, R.K., Eds., New Delhi: Springer-Verlag, 2014, pp. 31–46.

    Google Scholar 

  60. Markl, J.S., Schleuning, M., Forget, P.M., Jordano, P., Lambert, J.E., Traveset, A., Wright, S.J., and Böhning-Gaese, K., Meta-analysis of the effects of human disturbance on seed dispersal by animals, Conserv. Biol., 2012, vol. 26, pp. 1072–1081. https://doi.org/10.1111/j.1523-1739.2012.01927.x

    Article  PubMed  Google Scholar 

  61. Martín Belda, D., Anthoni, P., Wårlind, D., Olin, S., Schurgers, G., Tang, J., Smith, B., and Arneth, A., LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism, Geosci. Model Dev., 2022, vol. 15, pp. 6709–6745. https://doi.org/10.5194/gmd-15-6709-2022

    Article  ADS  CAS  Google Scholar 

  62. Mazoyer, M. and Roudart, L., Histoire des Agricultures du Monde. Du Néolithique à la Crise Contemporaine, Paris: Editions du Seuil, 1997.

    Google Scholar 

  63. Medeiros-Sarmento, P.S., Ferreira, L.V., and Gastauer, M., Natural regeneration triggers compositional and functional shifts in soil seed banks, Sci. Total Environ., 2021, vol. 753. https://doi.org/10.1016/j.scitotenv.2020.141934

  64. Mesgaran, M.B., Mashhadi, H.R., Zand, E., and Alizadeh, H.M., Comparison of three methodologies for efficient seed extraction in studies of soil weed seedbanks, Weed Res., 2007, vol. 47, pp. 472–478. https://doi.org/10.1111/j.1365-3180.2007.00592.x

    Article  Google Scholar 

  65. Moore, J.E., McEuen, A.B., Swihart, R.K., Contreras, T.A., and Steele, M.A., Determinants of seed removal distance by scatter-hoarding rodents in deciduous forests, Ecology, 2007, vol. 88, pp. 2529–2540. https://doi.org/10.1890/07-0247.1

    Article  PubMed  Google Scholar 

  66. Morris, E.C., Germinable soil seed bank of pasture, revegetation and remnant Cumberland Plain Woodland, Ecol. Manage. Restor., 2022, vol. 23, pp. 219–227. https://doi.org/10.1111/emr.12566

    Article  Google Scholar 

  67. Näther, W. and Wälder, K., Experimental design and satistical inference for cluster point processes – with applications to the fruit dispersion of anemochorous forest trees, Biom. J., 2003, vol. 45, pp. 1006–1022. https://doi.org/10.1002/bimj.200390058

    Article  MathSciNet  Google Scholar 

  68. Nikolaeva, M.G., Razumova, M.V., and Gladkova, V.N., Spravochnik po prorashchivaniyu pokoyashchihsya semian (Dormant Seed Germination Guide), Leningrad: Nauka, 1985.

  69. Ninot, J.M., Petit, A., and Casas, C., On the role of soil seed bank of rich pasture communities in a fragmented submediterranean landscape, in Grasslands: Ecology, Management and Restoration, Schröder, H.G., Ed., Hauppauge: Nova Sci., 2008, pp. 109–132.

    Google Scholar 

  70. Nuttle, T. and Haefner, J.W., Seed dispersal in heterogeneous environments: Bridging the gap between mechanistic dispersal and forest dynamics models, Am. Nat., 2005, vol. 165, pp. 336–349. https://doi.org/10.1086/428298

    Article  PubMed  Google Scholar 

  71. Odion, D.C. and Davis, F.W., Fire, soil heating, and the formation of vegetation patterns in chaparral, Ecol. Monogr., 2000, vol. 70, pp. 149–169. https://doi.org/10.1890/0012-9615(2000)070(0149:FSHATF)2.0.CO;2

    Article  Google Scholar 

  72. Odion, D. and Tyler, C., Are Long fire-free periods needed to maintain the endangered, fire-recruiting shrub Arctostaphylos morroensis (Ericaceae)?, Ecol. Soc., 2002, vol. 6, p. 4. https://doi.org/10.5751/es-00430-060204

    Article  Google Scholar 

  73. Padonou, E.A., Akakpo, B.A., Tchigossou, B., and Djossa, B., Methods of soil seed bank estimation: a literature review proposing further work in Africa, iForest, 2022, vol. 15, pp. 121–127. https://doi.org/10.3832/ifor3850-015

    Article  Google Scholar 

  74. Pannacci, E., Graziani, F., and Tei, F., Seed Filter Extractor: A new instrument for the evaluation of weed seedbank, Soil Tillage Res., 2015, vol. 150, pp. 78–82. https://doi.org/10.1016/j.still.2015.01.004

    Article  Google Scholar 

  75. Pauchard, A., García, R.A., Peña, E., González, C., Cavieres, L.A., and Bustamante, R.O., Positive feedbacks between plant invasions and fire regimes: Teline monspessulana (L.) K. Koch (Fabaceae) in central Chile, Biol. Invasions, 2008, vol. 10, pp. 547–553. https://doi.org/10.1007/s10530-007-9151-8

    Article  Google Scholar 

  76. Pons, T., Seed responses to light, in Seeds: the Ecology of Regeneration in Plant Communities, Fenner, M., Ed., Wallingford: CABI Int., 2000, pp. 237–260.

    Google Scholar 

  77. Raghunathan, N., François, L., Cazetta, E., Pitance, J.-L., de Vleeschouwer, K., and Hambuckers, A., Deterministic modelling of seed dispersal based on observed behaviours of an endemic primate in Brazil, Plos One, 2020, vol. 15, p. e0244220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rahman, A., James, T.K., and Grbavac, N., Potential of weed seedbanks for managing weeds: a review of recent New Zealand research, Weed Biol. Manage., 2001, vol. 1, pp. 89–95. https://doi.org/10.1046/j.1445-6664.2001.00017.x

    Article  Google Scholar 

  79. Rolston, M.P., Water impermeable seed dormancy, Bot. Rev., 1978, vol. 44, pp. 365–396. https://doi.org/10.1007/BF02957854

    Article  CAS  Google Scholar 

  80. Roovers, P., Bossuyt, B., Igodt, B., and Hermy, M., May seed banks contribute to vegetation restoration on paths in temperate deciduous forest?, Plant Ecol., 2006, vol. 187, pp. 25–38. https://doi.org/10.1007/s11258-006-9130-7

    Article  Google Scholar 

  81. Rosbakh, S., Baskin, C.C., and Baskin, J.M., Nikolaeva et al.'s reference book on seed dormancy and germination, Ecology, 2020, vol. 101. https://doi.org/10.1002/ecy.3049

  82. Russo, S.E., Portnoy, S., and Augspurger, C.K., Incorporating animal behavior into seed dispersal models: Implications for seed shadows, Ecology, 2006 vol. 87, pp. 3160–3174. https://doi.org/10.1890/0012-9658(2006)87(3160:IABISD)2.0.CO;2

    Article  PubMed  Google Scholar 

  83. Sanou, L., Savadogo, P., Zida, D., and Thiombiano, A., Contrasting land use systems influence soil seed bank composition and density in a rural landscape mosaic in West Africa, Flora, 2019, vol. 250, pp. 79–90. https://doi.org/10.1016/j.flora.2018.11.013

    Article  Google Scholar 

  84. Santana, V.M., Alday, J.G., and Baeza, M.J., Effects of fire regime shift in Mediterranean Basin ecosystems: changes in soil seed bank composition among functional types, Plant Ecol., 2014, vol. 215, pp. 555–566. https://doi.org/10.1007/s11258-014-0323-1

    Article  Google Scholar 

  85. Savadogo, P., Sanou, L., Dayamba, S.D., Bognounou, F., and Thiombiano, A., Relationships between soil seed banks and above-ground vegetation along a disturbance gradient in the W National Park trans-boundary biosphere reserve, West Africa, J. Plant Ecol., 2016, vol. 10, pp. 349–363. https://doi.org/10.1093/jpe/rtw025

    Article  Google Scholar 

  86. Schwartz-Lazaro, L.M. and Copes, J.T., A review of the soil seedbank from a weed scientists perspective, Agronomy, 2019, vol. 9. https://doi.org/10.3390/agronomy9070369

  87. Shi, Z., Zhang, J., and Wei, H., Research progress on soil seed bank: A bibliometrics analysis, Sustainability, 2020, vol. 12, p. 4888.

    Article  Google Scholar 

  88. Shi, Y.F., Shi, S.H., Huang, X.M., Jiang, Y.S., Liu, J., Zhao, Y., and Zhang, Z.S., A global meta-analysis of grazing effects on soil seed banks, Land Degrad. Dev., 2022a, vol. 33, pp.1892–1900. https://doi.org/10.1002/ldr.4271

    Article  Google Scholar 

  89. Shi, Y.F., Shi, S.H., Jiang, Y.S., and Liu, J., A global synthesis of fire effects on soil seed banks, Global Ecol. Conserv., 2022b, vol. 36, p. e02132. https://doi.org/10.1016/j.gecco.2022.e02132

    Article  Google Scholar 

  90. SID (2021) Kew Royal Botanical Garden, Seed Information Database (SID). Version 7.1.

  91. Snell, R.S., Simulating long-distance seed dispersal in a dynamic vegetation model, Global Ecol. Biogeogr., 2014, vol. 23, pp. 89–98. https://doi.org/10.1111/geb.12106

    Article  Google Scholar 

  92. Sousa, T.R., Costa, F.R.C., Bentos, T.V., Leal Filho, N., Mesquita, R.C.G., and Ribeiro, I.O., The effect of forest fragmentation on the soil seed bank of Central Amazonia, For. Ecol. Manage., 2017, vol. 393, pp. 105–112. https://doi.org/10.1016/j.foreco.2017.03.020

    Article  Google Scholar 

  93. Spaunhorst, D.J., Orgeron, A.J., and White, P.M., Burning postharvest sugarcane residue for control of surface-deposited divine nightshade (Solanum nigrescens) and itchgrass (Rottboellia cochinchinensis) seed, Weed Technol., 2019, vol. 33, pp. 693–700. https://doi.org/10.1017/wet.2019.65

    Article  Google Scholar 

  94. Tangney, R., Merritt, D.J., Callow, J.N., Fontaine, J.B., and Miller, B.P., Seed traits determine species' responses to fire under varying soil heating scenarios, Funct. Ecol., 2020, vol. 34, pp. 1967–1978. https://doi.org/10.1111/1365-2435.13623

    Article  Google Scholar 

  95. Tesfaye, G., Teketay, D., Assefa, Y., and Fetene, M., The impact of fire on the soil seed bank and regeneration of Harenna Forest, southeastern Ethiopia, Mt. Res. Dev., 2004, vol. 24, pp. 354–361. https://doi.org/10.1659/0276-4741(2004)024(0354:TIOFOT)2.0.CO;2

    Article  Google Scholar 

  96. Thompson, K. and Grime, J.P., Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats, J. Ecol., 1979, vol. 67, pp. 893–921.

    Article  Google Scholar 

  97. Trolliet, F., Forget, P.-M., Huynen, M.-C., and Hambuckers, A., Forest cover, hunting pressure, and fruit availability influence seed dispersal in a forest-savanna mosaic in the Congo Basin, Biotropica, 2017a, vol. 49, pp. 337–345. https://doi.org/10.1111/btp.12417

    Article  Google Scholar 

  98. Trolliet, F., Forget, P.M., Doucet, J.L., Gillet, J.F., and Hambuckers, A., Frugivorous birds influence the spatial organization of tropical forests through the generation of seedling recruitment foci under zoochoric trees, Acta. Oecol., 2017b, vol. 85, pp. 69–76. https://doi.org/10.1016/j.actao.2017.09.010

    Article  ADS  Google Scholar 

  99. Van Putten, B., Visser, M.D., Muller-Landau, H.C., and Jansen, P.A., Distorted-distance models for directional dispersal: a general framework with application to a wind-dispersed tree, Met. Ecol. Evol., 2012, vol. 3, pp. 642–652. https://doi.org/10.1111/j.2041-210X.2012.00208.x

    Article  Google Scholar 

  100. Wagner, S.A. and Fraterrigo, J.M., Positive feedbacks between fire and non-native grass invasion in temperate deciduous forests, For. Ecol. Manage., 2015, vol. 354, pp. 170–176. https://doi.org/10.1016/j.foreco.2015.06.024

    Article  Google Scholar 

  101. Wang, Y., Jiang, D., Toshio, O., and Zhou, Q., Recent advances in soil seed bank research, Contemp. Probl. Ecol., 2013, vol. 6, pp. 520–524. https://doi.org/10.1134/S1995425513050181

    Article  Google Scholar 

  102. Williams, P.R., Fire-stimulated rainforest seedling recruitment and vegetative regeneration in a densely grassed wet sclerophyll forest of north-eastern Australia, Aust. J. Bot., 2000, vol. 48, pp. 651–658. https://doi.org/10.1071/BT99020

    Article  Google Scholar 

  103. Williams, P.R., Congdon, R.A., Grice, A.C., and Clarke, P.J., Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire, Aust. Ecol., 2005, vol. 30, pp. 79–90. https://doi.org/10.1111/j.1442-9993.2004.01426.x

    Article  Google Scholar 

  104. Wright, B.R. and Fensham, R.J., Relationships between fire severity and recruitment in arid grassland dominated by the obligate-seeding soft spinifex (Triodia pungens), Int. J. Wildland Fire, 2016, vol. 25, pp. 1264–1272. https://doi.org/10.1071/WF16052

    Article  Google Scholar 

  105. Wright, B.R., Albrecht, D.E., Silcock, J.L., Hunter, J., and Fensham, R.J., Mechanisms behind persistence of a fire-sensitive alternative stable state system in the Gibson Desert, Western Australia, Oecologia, 2019, vol. 191, pp. 165–175. https://doi.org/10.1007/s00442-019-04474-1

    Article  ADS  PubMed  Google Scholar 

  106. Zalamea, P.C., Dalling, J.W., Sarmiento, C., Arnold, A.E., Delevich, C., Berhow, M.A., Ndobegang, A., Gripenberg, S., and Davis, A.S., Dormancy-defense syndromes and tradeoffs between physical and chemical defenses in seeds of pioneer species, Ecology, 2018, vol. 99, pp. 1988–1998. https://doi.org/10.1002/ecy.2419

    Article  PubMed  Google Scholar 

  107. Zida, D., Sanou, L., Diawara, S., Savadogo, P., and Thiombiano, A., Herbaceous seeds dominates the soil seed bank after long-term prescribed fire, grazing and selective tree cutting in savanna-woodlands of West Africa, Acta Oecol., 2020, vol. 108. https://doi.org/10.1016/j.actao.2020.103607

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hambuckers.

Ethics declarations

CONFLICT OF INTEREST

As author of this work, I declare that I have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hambuckers, A. A Guided Tour of the Soil Seed Banks. Contemp. Probl. Ecol. 17, 161–173 (2024). https://doi.org/10.1134/S1995425524010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425524010050

Keywords:

Navigation