Skip to main content
Log in

Size and Shape Variability of Bones in Perch Perca fluviatilis Linnaeus, 1758 in the Storage Reservoirs of Liquid Radioactive Wastes

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The size and shape variability of three bones of river perch from two adjacent reservoirs in the upper reaches of the Techa River (the Southern Urals, Russia), the Techa storage reservoir cascade of liquid radioactive technogenic wastes (contaminated for over 50 years), and Lake Irtyash (control) has been studied using geometric morphometrics methods. Perch bones in adjacent populations differ in shape; however, they are similar in growth rates. The range of sex variability of the bone shape is on average 5.4 times less than the intergroup differences of the perch population. With age, the frontal bone growth rates slow down, the praeoperculum growth rates do not change, and the cleithrum increases. Sexual dimorphism in bone sizes of older fish and a low level of sex differences in the shape of the frontal bone and praeoperculum in the Techa cascade population has been revealed. These data characterize a high degree of phenotypic plasticity of the perch and adaptive restructuring of its morphogenesis associated with the local environment of technogenic reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Aleyev, Yu.G., Funktsional’nye osnovy vneshnego stroeniya ryby (Functional Fundamentals of External Fish Structure), Moscow, 1963.

    Google Scholar 

  2. Baranov, V.Yu., Variability of skeletal bone shape of the bream introduced in the Urals, Vestn. Udmurt. Univ., Ser. Biol. Nauki Zemle, 2013, vol. 2, pp. 62–71.

    Google Scholar 

  3. Baranov, V.Yu., Changes in body shape of male and female perch and roach in sympatric populations of the Verkhne-Vyisky reservoir at various phases of the seasonal cycle, Vestn. Krasnoyarsk. Gos. Agrar. Univ., 2016, vol. 5, no. 116, pp. 32–38.

  4. Biologiya rechnogo okunya (Biology of the European Perch), Shatunovskii, M.I., Moscow: Nauka, 1993.

  5. Cao, X., Zhao, J., Li, C., Zhu, S., Hao, Y., Cheng, Y., and Wu, H., Morphological and skeletal comparison and ecological adaptability of Mandarin fish Siniperca chuat-si and big-eye Mandarin fish Siniperca kneri, Aquacult. Fish., 2021, vol. 6, pp. 455–464.

    Google Scholar 

  6. Craig, F.J., Percid Fishes: Systematics, Ecology and Exploitation, Oxford: Blackwell, 2000.

  7. Estlander, S., Nurminen, L., Mrkvička, T., Olin, M., Rask, M., and Lehtonen, H., Sex-dependent responses of perch to changes in water clarity and temperature, Ecol. Freshwater Fish, 2015, vol. 24, no. 4, pp. 544–552.

  8. Fontaine, P., Gardeur, J.N., Kestemont, P., and Georges, A., Influence of feeding level on growth, intraspecific weight variability and sexual growth dimorphism of Eurasian perch, Perca fluviatilis L., reared in a recirculation system, Aquaculture, 1997, vol. 157, pp. 1–9.

    Article  Google Scholar 

  9. Glubokovsky, M.K., Evolyutsionnaya biologiya lososevykh ryb (Evolutionary Biology of Salmonid Fishes), Moscow: Nauka, 1995.

  10. Hammer, Ø., Harper, D.A.T., and Ryan, P.D., PAST: Paleontological Statistics Software Package for Education and Data Analysis, Palaeontol. Electron., 2001, vol. 4, no. 1, pp. 1–9.

    Google Scholar 

  11. Hjelm, J., Persson, L., and Christensen, B., Growth, morphological variation and ontogenetic niche shifts in perch (Perca fluviatilis) in relation to resource availability, Oecologia, 2000, vol. 122, pp. 190–199.

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Hughes, K.A., Houde, A.E., Price, A.C., and Rodd, F.H., Mating advantage for rare males in wild guppy populations, Nature, 2013, vol. 503, pp. 108–110.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Klingenberg, C.P., MorphoJ: an integrated software package for geometric morphometrics, Mol. Ecol. Resour., 2011, vol. 11, pp. 353–357.

    Article  PubMed  Google Scholar 

  14. Kotegov, B.G., Variability of quantitative features of the head seismosensory system in European perch Perca fluviatilis L. under conditions of anthropogenic mineralization of ponds and medium-size reservoirs, Russ. J. Ecol., 2017, vol. 48, no. 1, pp. 51–59.

    Article  Google Scholar 

  15. Laporte, M., Berrebi, P., Claude, J., Vinyoles, D., Pou-Rovira, Q., Raymond, J.-C., and Magnan, P., The ecology of sexual dimorphism in size and shape of the freshwater blenny Salaria fluviatilis, Curr. Zool., 2018, vol. 64, no. 2, pp. 183–191.

    PubMed  Google Scholar 

  16. Norton, S.F., Luczkovich, J.L., and Motta, P.J., The role of ecomorphological studies in the comparative biology of fishes, Environ. Biol. Fishes, 1995, vol. 44, pp. 287–304.

    Article  Google Scholar 

  17. Pimakhin, A., Kouřil, J., Stejskal, V., and Žák, J., The effect of geographical origin of perch (Perca fluviatilis L. 1758) populations on growth rates under natural and aquaculture conditions: a review, J. Appl. Ichthyol., 2015, vol. 31, pp. 56–63.

    Article  Google Scholar 

  18. Pokrovskii, V.V., Intraspecific variability of the perch (Perca fluviatilis L.), Tr. Karelo-Finsk. Otd., Vses. Gos. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 1951, vol. 3, pp. 95–149.

    Google Scholar 

  19. Prchalová, M., Žák, J., Říha, M., Šmejkal, M., Blabolil, P., Vašek, M., Matěna, J., Peterka, J., Seďa, J., and Kubečka, J., Sexual size dimorphism of two common European percid fish: linkage with spatial distribution and diet, Hydrobiologia, 2022, vol. 849, pp. 2009–2027.

    Article  Google Scholar 

  20. Pryakhin, E.A., Tryapitsyna, G.A., Deryabina, L.V., et al., Current ecosystem state of reservoirs R-11, R-10, R-4, R-17 and R-9 of Mayak PA, Vopr. Radiats. Bezop., 2011, no. 5, pp. 5–23.

  21. Pryakhin, E.A., Tryapitsina, G.A., Osipov, D.I., et al., Biocoenoses of the Techa cascade reservoirs, Vopr. Radiats. Bezop., 2018, no. 4, pp. 71–79.

  22. Rohlf, F.J., TpsDig2, digitize landmarks and outlines, version 2.17. Department of Ecology and Evolution, State University of New York at Stony Brook, 2013a (program). http://life.bio.sunysb.edu/morph/. Cited November 5, 2016.

  23. Rohlf, F.J., TpsUtil, file utility program, version 1.60. Department of Ecology and Evolution, State University of New York at Stony Brook, 2013b (program). http:// life.bio.sunysb.edu/morph/. Cited February 12, 2017.

  24. Rohlf, F.J. and Slice, D., Extension of the Procrustes method for the optimal superimposition of landmarks, Syst. Zool., 1990, vol. 39, no. 1, pp. 40–59.

    Article  Google Scholar 

  25. Schluter, D., Adaptive radiation in sticklebacks: trade-offs in feeding performance and growth, Ecology, 1995, vol. 76, no. 1, pp. 82–90.

    Article  Google Scholar 

  26. Sheets, H.D. and Zelditch, M.L., Studying ontogenetic trajectories using resampling methods and landmark data, Hystrix, 2013, vol. 24, no. 1, pp. 67–73.

    Google Scholar 

  27. Shine, R., Ecological causes for the evolution of sexual dimorphism: a review of the evidence, Q. Rev. Biol., 1989, vol. 64, pp. 419–461.

    Article  CAS  PubMed  Google Scholar 

  28. Sirakov, I., Staykov, Y., Ivancheva, E., Nikolov, G., and Atanasov, A., Morphometric characteristic of European perch (Perca fluviatilis) related to sex dimorphism, Agric. Sci. Technol., 2012, vol. 4, no. 3, pp. 203–207.

    Google Scholar 

  29. Smagin, A.I., Ekologiya promyshlennykh vodoemov predpriyatiya yadernogo toplivnogo tsikla na Yuzhnom Urale (The Ecology of Nuclear Fuel Cycle Facility Industrial Water Reservoirs in the Southern Urals), Ozyorsk: VRB, 2007.

  30. Spoljaric, M.A. and Reimchen, T.E., Habitat-dependent reduction of sexual dimorphism in geometric body shape of Haida Gwaii threespine stickleback, Biol. J. Linn. Soc., 2008, vol. 95, pp. 505–516.

    Article  Google Scholar 

  31. Svanback, R. and Eklov, P., Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch, Oecologia, 2002, vol. 131, pp. 61–70.

    Article  ADS  PubMed  Google Scholar 

  32. Terent’ev, P.V., The method of correlation Pleiades, Vestn. Leningr. Gos. Univ., 1959, no. 9, pp. 137–141.

  33. Vasil’ev, A.G., Baranov, V.Yu., and Chibiryak, M.V., Analysis of variability of size and shape of river perch (Perca fluviatilis L.) body from control and impact reservoirs of the Techa river basin by geometric morphometric methods, Vopr. Radiats. Bezop., 2007, no. 1, pp. 63–77.

  34. Vasil’ev, A.G., Vasil’eva, I.A., and Shkurikhin, A.O., Geometricheskaya morfometriya: ot teorii k praktike (Geometric Morphometrics: from Theory to Practice), Moscow: KMK, 2018.

  35. Vasil’ev, A.G., Bol’shakov, V.N., and Vasil’eva, I.A., Intra- and interpopulation odontological variability in the Gray Red-backed Vole (Craseomys rufocanus) and Yu.I. Chernov’s compensation principle, Russ. J. Ecol., 2020, vol. 51, no. 1, pp. 1–10.

    Article  Google Scholar 

  36. Vasil’eva, E.D., Size variability and sexual dimorphism of the Teleostean skull: determining factors and principal patterns, J. Ichthyol., 1997, vol. 37, no. 5, pp. 331–343.

    Google Scholar 

  37. Voskoboinikova, O.S. and Grechanov, I.G., Development of the skeleton during the ontogenesis of the river perch Perca fluviatilis, J. Ichthyol., 2002, vol. 42, no. 4, pp. 322–333.

    Google Scholar 

  38. Yakovlev, V.N., Kozhara, A.V., Izyumov, Yu.G., et al., Fens of the carps and European perch, in Fenetika prirodnykh populyatsii (Phenetics of Natural Populations), Moscow: Nauka, 1988, pp. 53–64.

  39. Zelditch, M.L., Swiderski, D.L., Sheets, H.D., and Fink, W.L., Geometric Morphometrics for Biologists: a Primer, Elsevier: Acad. Press, 2004.

Download references

Funding

The work was carried out as part of State Task of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, no. 122021000091-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Baranov.

Ethics declarations

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

No formal ethical approval was necessary: the work doesn’t contain any studies involving human or animal subjects.

Additional information

Translated by T. Kuznetsova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, V.Y. Size and Shape Variability of Bones in Perch Perca fluviatilis Linnaeus, 1758 in the Storage Reservoirs of Liquid Radioactive Wastes. Contemp. Probl. Ecol. 17, 125–136 (2024). https://doi.org/10.1134/S1995425524010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425524010025

Keywords:

Navigation