Skip to main content
Log in

Genetic Structure of Technogenic Forests in the Oil-Producing Region of Western Siberia: Problem Statement

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

A pilot survey of three closely spaced Pinus sylvestris L. populations (dry land, bog land, and technogenic (growing on the sandy base of a cluster drilling pad)) has been performed in the oil-producing region of Western Siberia using six polymorphic microsatellite nuclear DNA markers. The data indicate that the populations are quite similar in main genetic variability parameters estimated on the basis of six polymorphic loci. Subtle, although statistically significant, differences were identified between the dry land and bog land populations, including differences in FIS. The technogenic population occupies an intermediate position between the studied natural populations and does not differ statistically significantly from them. Apparently, this is because young technogenic pine stands are a mixture of dry land and bog land genotypes, while the appearance of unique (private) alleles in the technogenic population and the adjacent bog land population could be induced by chemical pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Abolin, R.I., Swamp forms of Pinus silvestris L., Tr. Bot. Muz. Akad. Nauk, 1915, vol. 14, p. 62-84.

    Google Scholar 

  2. Chizhov, B.E., Les i neft' Khanty-Mansiiskogo avtonomnogo okruga (Forest and Oil of Khanty-Mansiysky Autonomous District), Tyumen: Yu. Mandriki, 1998.

  3. Chizhov, B.E. and Cherkashina, M.V., Reclamation of lands disturbed during exploration, development and operation of oil and gas fields, Problemy toplivno-energeticheskogo kompleksa Zapadnoi Sibiri (Problems of the Fuel and Energy Complex of Western Siberia), 2009, pp. 382–391.

  4. Devey, M.E., Bell, J.C., Smith, D.N., et al., A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers, Theor. Appl. Genet., 1996, vol. 92, pp. 673–679.

    Article  CAS  PubMed  Google Scholar 

  5. Elsik, C.G., Minihan, V.T., Hall, S.E., et al., Low-copy microsatellite markers for Pinus taeda L., Genome, 2000, vol. 43, pp. 550–555.

    Article  CAS  PubMed  Google Scholar 

  6. Galinskaya, T.V., Shchepetov, D.M., and Lysenkov, S.N., Prejudices against microsatellite studies and how to resist them, Russ. J. Genet., 2019, vol. 55, no. 6, pp. 657–671.

    Article  CAS  Google Scholar 

  7. Gladkov, Yu.F. and Sheikina, O.V., Genetic polymorphism of the Pinus sylvestris trees from bog land and dry land cenopopulations on nuclear SSR loci, Vestn. Povolzh. Gos. Technol. Univ., 2019, vol. 4, no. 44, pp. 70–79.

    Google Scholar 

  8. Il’inov, A.A. and Raevskii, B.V., The current state of Pinus sylvestris L. gene pool in Karelia, Sib. Lesn. Zh., 2016, no. 5, pp. 45–54.

  9. Kal’ko, G.V., The testing of nuclear microsatellite markers of Scots pine, Tr. S.-Peterb. Nauchno-Issled. Inst. Lesn. Khoz., 2017, no. 1, pp. 23–34.

  10. Kamalov, R.M., Petyurenko, M.Yu., and Degtyareva, A.P., Testing of microsatellite markers to assess the level of genetic diversity of Pinus sylvestris L., Tr. S.-Peterb. Nauchno-Issled. Inst. Lesn. Khoz., 2022, no. 4, pp. 18–30.

  11. Kapel’kina, L.P., Malyshkina, L.A., and Chugunova, M.V., Remediation of oil-contaminated bog soils, in Biologicheskaya rekul’tivatsiya narushennykh zemel’ (Biological Restoration of Disturbed Lands), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2003, pp. 150–160.

  12. Larionova, A.Ya. and Ekart, A.K., Genetic diversity and differentiation of swamp populations pine, Khvoinye Boreal’noi Zony, vol. 27, nos. 1–2, 2010, pp. 120–126.

    Google Scholar 

  13. Makhatkov, I.D., Tarakanov, V.V., and Tyupina, V.M., Phenetic structure of pine populations in dry valleys and swamps of Western Siberia, Khvoinye Boreal’noi Zony, 2007, vol. 24, nos. 2–3, pp. 248–250.

    Google Scholar 

  14. Mudrik, E.A., Belokon’, M.M., Belokon’, Yu.S., et al., Estimation of the mating system in Pinus cembra L. populations by isozyme and microsatellite markers, Byull. Gos. Nikitsk. Bot. Sada, 2010, no. 101, pp. 89-9-2.

  15. Nei, M., Genetic distance between populations, Am. Nat., 1972, vol. 106, pp. 283–292.

    Article  Google Scholar 

  16. Nei, M., F-statistics and the analysis of gene diversity in subdivided populations, Ann. Hum. Genet., 1977, vol. 41, pp. 225–233.

    Article  CAS  PubMed  Google Scholar 

  17. Nei, M. and Chesser, R.K., Estimation of fixation indices and gene diversities, Ann. Hum. Genet., 1983, vol. 47, pp. 253–259.

    Article  CAS  PubMed  Google Scholar 

  18. Omasheva, M.E., Aubakirova, K.P., and Ryabushkina, N.A., Molecular markers. Causes and consequences of genotyping errors, Biotekhnol., Teor. Prakt., 2013, no. 4, pp. 20–28.

  19. Oreshkova, N.V., Sedel’nikova, T.S., Pimenov, A.V., and Efremov, S.P., Analysis of genetic structure and differentiation of the bog and dry land populations of Pinus sibirica Du Tour based on nuclear microsatellite loci, Russ. J. Genet., 2014, vol. 50, pp. 934–941.

    Article  CAS  Google Scholar 

  20. Pan, F., Shihui, N., Huwei, Y., et al., Development and characterization of 25 EST-SSR markers in Pinus sylvestris var. Mongolica (Pinaceae), Appl. Plant Sci., 2014, vol. 2, no. 1, pp. 1–4.

    Google Scholar 

  21. Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Notes, 2006, no. 6, pp. 288–295.

  22. Petrova, I.V. and Sannikov, S.N., Izolyatsiya i differentsiatsiya populyatsii sosny obyknovennoi (Isolation and Differentiation of Scots Pine Populations), Ekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

  23. Petrova, I.V., Sannikov, S.N., Cherepanova, O.E., et al., Genetic differentiation of dry land and bog populations of scots pine on the Russian plain, Izv. Vyssh. Uchebn. Zaved., Lesn. Zh., 2013, vol. 6, no. 336, pp. 29–37.

    Google Scholar 

  24. Sebastiani, F., Pinzauti, F., Kujala, S.T., et al., Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L., Conserv. Genet. Resour., 2011, vol. 4, pp. 231–234.

    Article  Google Scholar 

  25. Sedykh, V.N., Technogenic forests on the disturbed lands of Western Siberia, Sib. Lesn. Zh., 2016, no. 2, pp. 43–50.

  26. Sheikina, O.V., Gladkov, Yu.F., and Demakov, Yu.P., Genetic structure of dry land and swamp cenopopulations of Scotch pine in the Republic of Mari El, Materialy XII Vserossiiskogo populyatsionnogo seminara pamyati N.V. Glotova (1939–2016) “Problemy populyatsionnoi biologii” (Proc. XII All-Russian Population Seminar in Memory of N.V. Glotov (1939–2016) “Problems of Population Biology”), Yoshkar-Ola: Spring, 2017, pp. 262–265.

  27. Sheller, M., Toth, E.G., Ciocirlan, E., Mikhaylov, P., Kulakov, S., Kulakova, N., Melnichenko, N., Ibe, A., Sukhikh, T., and Curtu, A.L., Genetic diversity and population structure of scots pine (Pinus sylvestris L.) in Middle Siberia, Forests, 2023, vol. 14, p. 119.

    Article  Google Scholar 

  28. Sivolapov, V.A., Loginova, L.A., Vorob’eva, E.A., Veprintsev, V.N., and Shchetinkin, S.V., Common oak and scots pine subpopulations genetic changes under prolonged exposure to low doses of radiation, Lesn. Vestn., 2022, vol. 26, no. 3, pp. 14–20.

    Google Scholar 

  29. Solntseva, N.P., Dobycha nefti i geokhimiya prirodnykh landshaftov (Oil Recovery and Natural Landscape Geochemistry), Moscow: Mosk. Gos. Univ., 1998.

  30. Soromotin, A.V., Vozdeistvie dobychi nefti na taezhnye ekosistemy Zapadnoi Sibiri (Impact of Oil Production on the Taiga Ecosystems of Western Siberia), Tyumen: Tyumen. Gos. Univ., 2010.

  31. Sukachev, V.N., About the swamp pine, Lesn. Zh., 1905, vol. 35, no. 3., pp. 354–372.

    Google Scholar 

  32. Van Oosterhout, C., Hutchinson, W., Wills, D., and Shipley, P., Micro-checker: software for identifying and correcting genotyping errors in microsatellite data, Mol. Ecol. Resour., 2004, no. 4, pp. 535–538.

  33. Vidyakin, A.I., Phene of forest woody plants: isolation, scaling and use in population studies (on the example of Pinus sylvestris L.), Ekologiya, 2001, no. 3, pp. 197–202.

  34. Zhivotovskii, L.A., Integratsiya poligennykh sistem v populyatsiyakh (Integration of Polygene Systems in Populations), Moscow: Nauka, 1984.

  35. Zhivotovskii, L.A., Microsatellite variation in human populations and the methods of their analysis, Vestn. Vavilovskogo O-va. Genet. Sel., 2006, vol. 10, no. 1, pp. 74–96.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to reviewers for constructive remarks resulting in a partial revision of the manuscript.

Funding

This study was performed as part of the Base Project (State Task) of the Federal Research Center Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences, project no. 121031500336-9 (Functional–Dynamic Biodiversity Indication in Siberian Forests).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Tarakanov or K. G. Khomutova.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarakanov, V.V., Khomutova, K.G. Genetic Structure of Technogenic Forests in the Oil-Producing Region of Western Siberia: Problem Statement. Contemp. Probl. Ecol. 16, 672–678 (2023). https://doi.org/10.1134/S1995425523050128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523050128

Keywords:

Navigation