Skip to main content
Log in

Assessment of the Ecological and Genetic Potential of Poplar Mixoploids in Voronezh Oblast

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This paper presents the results of field tests and chromosome analysis for five micropropagated clones of triploid white poplar (Populus alba L.) and grey poplar (Populus × canescens Sm.), which are of a mixoploid nature. In order to assess the ecological and genetic potential of the plants, they are tested in different edaphic conditions. It is found that the clones (genotypes) at the age of 2–23 years grown on black soil (chernozem) had better survival index, preservation rate, growth, and health state than the same clones grown on poor dry acidic sandy loams. Under conditions of edaphic stress, clones had a higher cytogenetic polymorphism and heterogeneity of somatic cells (compared to chernozem). Apparently, the genetic and presumably epigenetic variability, manifested in a change in the degree of mixoploidy (the ratio of cells of different levels of ploidy) depending on environmental conditions and the nature of gene expression (an increase in the proportion of cells with residual nucleoli in the metaphase of mitosis), can provide the most effective implementation of the functions of genes for the adaptation of clones in adverse conditions. The study demonstrated that the response of clones to adverse growing conditions largely depends on their genotypic characteristics (including characteristics of the species). The clone of the grey poplar had the highest ecological plasticity. This clone has a broad genetic basis (it is a hybridogenic species, mixoploid, allotriploid), which expands the possibilities for its use in various growing conditions. Micropropagated clones of the white poplar execute their production potential (growth) on chernozem or alluvial soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alov, I.A., Pathology of mitosis, Vestn. Akad. Nauk SSSR, 1965, no. 11, pp. 58–66.

  2. Bakulin, V.T., Topol’ belyi v Zapadnoi Sibiri (White Poplar in Western Siberia), Novosibirsk: Geo.

  3. Bakulin, V.T., Use of poplar in the landscaping of industrial sites of Siberia: A brief analysis of the problem, Contemp. Probl. Ecol., 2005, vol. 12, no. 4, pp. 563–571.

    Google Scholar 

  4. Banayev, Y.V., Shishkin, S.V., Voronkova, M.S., Belanova, A.P., and Tomoshevich, M.A., Morphological and biochemical features of Populus × canescens in natural populations of the Altai Region, Vestn. Altai. Gos. Agrar. Univ., 2017, vol. 8, no. 154, pp. 90‒97.

  5. Butorina, A.K., Factors of karyotypes evolution in woody plants, Usp. Sovrem. Biol., 1989, vol. 3, no. 6, pp. 342–357.

    Google Scholar 

  6. Butorina, A.K. and Tien, D.N., The rhythms of daily mitotic activity in Vigna radiate (L.) R. Wilczek, Tsitologiya, 2008, vol. 50, no. 8, pp. 729–733.

    CAS  Google Scholar 

  7. Butorina, A.K., Kalaev, V.N., and Karpova, S.S., Peculiarities of mitosis and nucleolar characteristics of the silver birch under antropogenous pollution, Tsitologiya, 2002, vol. 44, no. 4, pp. 392 – 399.

    CAS  Google Scholar 

  8. Campos, J.M.S.D., and Viccini, L.F., Cytotoxicity of aluminum on meristematic cells of Zea mays and Allium cepa, Caryologia, 2003, vol. 56, no. 1, pp. 65–73. https://doi.org/10.1080/00087114.2003.10589309

    Article  Google Scholar 

  9. Erst, A.A., Shishkin, S.V., and Voronkova, M.S., The generation of interspecific hybrids in (Populus alba × pp. bolleana) × pp. × canescens by in vitro culture, Sib. Lesn. Zh., 2019, no. 2, pp. 45–52. https://doi.org/10.15372/SJFS20190204

  10. Kabata-Pendias, A., Trace Elements in Soils and Plants. Fourth Editions, CRC Taylor and Francis Group, 2011.

    Google Scholar 

  11. Kalashnik, N.A., Chromosome aberrations as indicator of technogenic impact on conifer stands, Russ. J. Ecol., 2008, vol. 39, no. 4, pp. 261–271.

    Article  Google Scholar 

  12. Kaňuchová, A. and Ďurkovič, J., Wood ontogeny during ex vitro acclimatization in micropropagated hybrid poplar clones, Biol. Plant., 2013, no. 57, pp. 144–148. https://doi.org/10.1007/s10535-012-0122-2

  13. Kelly, J.M. and Ericsson, T., Assessing the nutrition of juvenile hybrid poplar using steady state technique and a mechanistic model, For. Ecol. Manage., 2003, vol. 180, nos. 1–3, pp. 249–260.

    Article  Google Scholar 

  14. Keseru, Z., Balla, I., Antal, B., and Redei, K., Micropropagation of Leuce-poplars and evaluation of their development under sandy site conditions in Hungary, Acta Silv. Lign. Hung., 2015, vol. 11, no. 2, pp. 139–152. https://doi.org/10.1515/aslh-2015-0011

    Article  Google Scholar 

  15. Kidd, P.S. and Proctor, J., Effects of aluminium on the growth and mineral composition of Betula pendula Roth, J. Exp. Bot., 2000, vol. 51, pp. 1057–1066. https://doi.org/10.1093/jexbot/51.347.1057

    Article  CAS  PubMed  Google Scholar 

  16. Kondratyeva, A.M., Amineva, E.Yu., Tabatskaya, T.M., Mashkina, O.S., and Fedulova, T.P., Expression dynamics of DREB transcription factor genes in poplar and birch clones in vitro, Byull. Gos. Nikitsk. Bot. Sada, 2022, no. 144, pp. 88–94. https://doi.org/10.36305/0513-1634-2022-144-88-94

  17. Korchagin, O.M., Mashkina, O.S., and Tregubov, O.V., Field trials of micropropagated clones of triploid white and grey poplars, IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 226, p. 012007. https://doi.org/10.1088/1755-1315/226/1/012007

  18. Koropachinsky, I.Yu. and Milyutin, L.I., Estestvennaya gibridizatsiya drevesnykh rastenii (Natural Hybridization in Woody Plants), Novosibirsk: Geo, 2006.

    Google Scholar 

  19. Kulaichev, A.P., Metody i sredstva kompleksnogo analiza dannykh (Methods and Tools for a Complex Data Analysis), Moscow: Forum, 2006.

  20. Kunakh, V.A., Genome plasticity of somatic cells and plant adaptability, in Molekulyarnaya i prikladnaya genetika (Molecular and Applied Genetics), Minsk: Pravo Ekonomika, 2011, no. 12, pp. 7–14.

  21. Kuznetsova, N.F., Development of specific and nonspecific responses to stress in Pinus sylvestris L. at population level in a gradient of drought years, Russ. J. Ecol., 2015, vol. 46, pp. 405–410. https://doi.org/10.1134/S1067413615050136

    Article  Google Scholar 

  22. Kuznetsova, N.F., Droughts in the forest-steppe zone of Central Chernozemic Region and criteria for evaluation of their intensity, Izv. Sarat. Univ., Ser. Nauki Zemle, 2019, vol. 19, no. 3, pp. 142–148. https://doi.org/10.18500/1819-7663-2019-19-3-142-148

    Article  Google Scholar 

  23. Lakin, G.F., Biometriya (Biometrics), Moscow: Vyssh. Shkola, 1990.

    Google Scholar 

  24. Mashkina, O.S., The formation of diploid pollen in Populus exposed to high temperatures, Izv. Ross. Akad. Nauk, Ser. Biol., 1992, no. 1, pp. 66–78.

  25. Mashkina, O.S., Testing of triploid poplar hybrids in Voronezh Region, Sib. Lesn. Zh., 2016, no. 5, pp. 72–81.

  26. Mashkina, O.S., Tabatskaya, T.M., Morkovina, S.S., and Panyavina, E.A., Growing seedlings white poplar (Populus alba L.) based on the collection in vitro and evaluation of its cost, Lesotekh. Zh., 2016, no. 1, p. 21.

  27. Mashkina, O.S., Shabanova, E.A., Varivodina, I.N., and Grodetskaia, T.A., Field trials of in vitro propagated aspen clones (Populus tremula L.): growth, productivity, wood quality, and genetic stability, Izv. VUZOV Lesn. Zh., 2019, no. 6, pp. 25–38. https://doi.org/10.17238/issn0536-1036.2019.6.25

  28. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with Tobacco tissue cultures, Phisiol. Plant., 1962, vol. 15, no. 13, pp. 473–497.

    Article  CAS  Google Scholar 

  29. Muratova, E.N., Chromosomal mutations in Pinus sylvestris L. at Southern Zabaikalia, Izv. Akad. Nauk SSSR, Ser. Biol., 1991, no. 5, pp. 689–699.

  30. Muratova, E.N. and Sedelnikova, T.S., Genome and chromosomal mutations of Pinus sylvestris L. in the extreme growing conditions, Khvoinye Boreal’nye Zony, 2004, no. 2, pp. 128–140.

  31. Sedelnikova, T.S., Variability of genome size in conifers under extreme environmental conditions, Biol. Bull. Rev., 2015, vol. 135, no. 5, pp. 514–528.

  32. Rahman, R. and Upadhyaya, H., Aluminium toxicity and its tolerance in plant: A review, J. Plant Biol., 2021, no. 64, pp. 101–121. https://doi.org/10.1007/s12374-020-09280-4

  33. Sivolapov, A.I., Topol’ sereyushchii. Genetika, selektsiya, razmnozhenie (Grey Poplar. Genetics, Selection, Reproduction, Voronezh: Voronezh. Gos. Univ., 2005.

  34. Sivolapov, A.I., Stability of mixoploid (allotriploid) poplars to abiotic environmental factors, in Postgenomnye tekhnologii: ot teorii k praktike (Postgenomic Technologies: from Theory to Practice), Voronezh, 2019, pp. 121–124.

  35. Sivolapov, A.I., Politov, D.V., Mashkina, O.S., Belokon, M.M., Sivolapov, V.A., Belokon, Y.S., and Tabatskaya, T.M., Cytological, molecular-genetic and silvicultural-selection research of polyploid poplars, Sib. Lesn. Zh., 2014, no. 4, pp. 50–58.

  36. Stefanou, S. and Papazafeiriou, A.Z., The effect of soil physical properties of an Entisol on the growth of young poplar trees (Populus sp.), Bulg. J. Agric. Sci., 2014, vol. 20, no. 4, pp. 807–812.

    Google Scholar 

  37. Syso, A.I., Boyarskikh, I.G., Huo Junwei, and Syromlya, T.I., Influence of soil conditions on the manifestation of chlorosis and parthenocarp in Lonicera caerulea L., Contemp. Probl. Ecol., 2021, vol. 14, no. 5, pp. 525–537. https://doi.org/10.15372/SEJ20210513

    Article  Google Scholar 

  38. Topil’skaya, L.A., Luchnikova, S.A., and Chuvashina, N.P., Study of somatic and meiotic chromosomes of currants on acetohematoxylin compressed preparations, Byull. Tsentr. Genet. Lab. im. I.V. Michurina, 1975, no. 22, pp. 58–61.

  39. Tsarev, A.P., Tsareva, R.P., and Tsarev, V.A., The Time pattern of survival and productivity of Eupopulus tested in the temperature climatic belt, Inf. Vestn. Vavilovskogo Obshch. Genet. Sel., 2010, vol. 14, no. 2, pp. 659–668.

    Google Scholar 

  40. Tsarev, A.P., Wühlisch, G., and Tsareva, R.P., Hybridization of poplars in the Central Chernozem region of Russia, Silvae Genet., 2016, vol. 65, no. 2, pp. 1–10. https://doi.org/10.1515/sg-2016-0011

    Article  Google Scholar 

  41. Tsarev, A.P., Plugatar, Yu.V., and Tsareva, R.P., Selektsiya i sortoispytanie topolei (Selection and Testing of Poplars), Simferopol: ARIAL, 2019.

  42. Tsarev, A.P., Tsarev, V.A., Tsareva, R.P., and Laur, N.V., Evaluation of ecological plasticity and stability of some promising varieties of poplars, Lesn. Zh., 2020, no. 5, pp. 119–130. https://doi.org/10.37482/0536-1036-2020-5-119-130

  43. Tüfekçioğlu, A., Kalay, H.Z., and Yilmaz, M., Effects of some soil properties on the growth of hybrid poplar in the Terme-Gölardi region of Turkey, Turk. J. Agric. For., 2005, vol. 29, no. 3, pp. 221–226.

    Google Scholar 

  44. Turchin, T.Ya. and Zavgorodnyaya, A.S., Growth course of pure and mixed white poplar stands in the Don River Floodplain, Lesovedenie, 2013, no. 1, pp. 23–29.

  45. Yudanova, S.S., Mixoploidy of sugar beet cell populations, in Entsiklopediya roda Beta. Biologiya, genetika i selektsiya svekly (Encyclopedia of the Genus Beta. Biology, Genetics and Selection of Beets), Novosibirsk: Sova, 2010, pp. 63–86.

  46. Zhigunov, A.V., Shabunin, D.A., and Butenko, O.Yu., Triploid aspen forest plantations of in vitro planting material, Vestn. Povolzh. Gos. Tekhnol. Univ., 2014, vol. 4, no. 24, pp. 21–30.

    Google Scholar 

  47. Žiauka, J. and Kuusienė, S., Multiplication and growth of hybrid poplar (Populus alba × P. tremula) shoots on a hormone-free medium, Acta Biol. Hung., 2014, vol. 65, no. 3, pp. 346–354. https://doi.org/10.1556/ABiol.65.2014.3.10

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

In preparing this publication, materials from the bioresource scientific collection at VNIILGISbiotech “Collection of In Vitro Clones of Valuable Genotypes of Deciduous Woody Plants” were used. UNU no. 569228.

Funding

This work was carried out as part of State Tasks of the Federal Forestry Agency no. 114040740046, АААА-А17-117041810337-8, and АААА-А20-120012890092-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Mashkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mashkina, O.S., Amineva, E.Y. Assessment of the Ecological and Genetic Potential of Poplar Mixoploids in Voronezh Oblast. Contemp. Probl. Ecol. 16, 600–611 (2023). https://doi.org/10.1134/S1995425523050062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523050062

Keywords:

Navigation