Skip to main content
Log in

Structural and Functional Features of Galium × affrenum (Klokov) Ostapko (Rubiaceae) in Comparison with Its Parental Species

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The ecological, morphological, physiological, and biochemical characteristics of representatives of the genus Galium (Rubiaceae) have been studied. The objects of study are the hybrid (nothospecies) Galium × affrenum (Klokov) Ostapko (=nothospecies) and its parental species G. ruthenicum Willd., and G. octonarium (Klokov) Pobed. s. l. G. × affrenum is habitually closer to G. ruthenicum; however, it differs from the latter in pale lemon flowers. Based on the method of artificial neural networks, it is shown that the nothospecies is closer to the parental species G. octonarium with respect to physiological and biochemical features. The leaf biomass of G. × affrenum is characterized by an increased content of photosynthetic pigments and a greater variability in the concentration of photosynthetic pigments and lipid metabolism, which may be key to its greater stability and viability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abdel-Khalik, K.N., Monier, M.A.E.-G., and Elkordy, A.A., Anatomical findings of the genus Galium L. (Rubiacaeae) in Egypt and their systematic implications, Turk. J. Bot., 2008, vol. 32, no. 5, pp. 353–359.

    Google Scholar 

  2. Asada, K., Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol., 2006, no. 141, pp. 391–396.

  3. Balde, E.A., Morphology of fruits and surface sculpture of mericarps of species from the section Galium of the genus Galium (Rubiaceae), Rastit Mir Aziat. Ross., 2012, no. 1, pp. 39–43.

  4. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  5. Bolouri-Moghaddam, M.R., Le Roy, K., Xiang, L., Rolland, F., and Van den Ende, W., Sugar signalling and antioxidant network connections in plant cells, FEBS J., 2010, vol. 277, pp. 2022–2037.

    Article  CAS  PubMed  Google Scholar 

  6. Bondarenko, V.Yu., Barkovsky, A.V., Shashko, A.Yu., Chernysh, M.A., Przhevalskaya, D.A., Kolbanov, D.V., Sokolik, A.I., Smolich, I.I., Medvedev, S.S., and Demidchik, V.V., Phenotype analysis of ornamental plants using artificial neural networks: determination of taxonomic and physiological characteristics, Zh. Beloruss. Gos. Univ., Biol., 2019, no. 1, pp. 25–32.

  7. Bose, J., Rodrigo-Moreno, A., and Shabala, S., ROS homeostasis in halophytes in the context of salinity stress tolerance, J. Exp. Bot., 2014, vol. 65, p. 1241e1257.

  8. Demidchik, V., Mechanisms of oxidative stress in plants: From classical chemistry to cell biology, Environ. Exp. Bot., 2015, vol. 109, pp. 212–228.

    Article  CAS  Google Scholar 

  9. Dymova, O.V. and Golovko, T.K, Photosynthetic pigments in native plants of the taiga zone at the European Northeast Russia, Russ. J. Plant Physiol., 2019, vol. 66, pp. 384–392.

    Article  CAS  Google Scholar 

  10. Ehrendorfer, F., Vladimirov, V., and Barfuss, M.H.J., Paraphyly and polyphyly in the worldwide tribe Rubieae (Rubiaceae): Challenges for genetic delimitation, Ann. Mo. Bot. Gard., 2014, vol. 100, pp. 79–88.

    Article  Google Scholar 

  11. Elkordi, A.M. and Shantser, I.A., Morphology of fruits of bedstraws (Galium, Rubiaceae) of section Platygalium and its significance for taxonomy, Turczaninowia, 2015, vol. 18, no. 1, pp. 82–89.

    Article  Google Scholar 

  12. Esteban, R., Barrutia, O., Artetxe, U., Fernandez-Marin, B., Hernandez, A., and Garcia-Plazaola, J.I., Internal and external external factors affecting photosynthetic pigment composition in plants: a meta-analytical approach, New Phytol., 2015, vol. 206, no. 1, pp. 268–280.

    Article  CAS  PubMed  Google Scholar 

  13. Foyer, C.H. and Noctor, G., Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria, Physiol. Plant., 2003, vol. 119, no. 3, pp. 355–364.

    Article  CAS  Google Scholar 

  14. Golovko, V.V. and V.V., Krasnoproshin, Neirosetevye tekhnologii obrabotki dannykh: uchebnoe posobie (Neural Network Technologies for Data Processing: Handbook), Minsk: Beloruss. Gos. Univ., 2017.

  15. Hammer, K., Das domestikationssyndrom, Kulturpflanze, 1984, vol. 32, no. 1, pp. 11–34.

    Article  Google Scholar 

  16. Ivanov, L.A., Ronzhina, D.A., Yudina, P.K., Zolotareva, N.V., Kalashnikova, I.V., and Ivanova, L.A, Seasonal dynamics of the chlorophyll and carotenoid content in the leaves of steppe and forest plants on species and community level, Russ. J. Plant Physiol., 2020, vol. 67, pp. 453–462.

    Article  CAS  Google Scholar 

  17. Ivanova, L.A., Yudina, P.K., Ronzhina, D.A., Ivanov, L.A., and Hölzel, N., Quantitative mesophyll parameters rather than whole-leaf traits predict response of C3 steppe plants to aridity, New Phytol., 2018, vol. 217, no. 2, pp. 558–570.

    Article  CAS  PubMed  Google Scholar 

  18. Kates, M., Tekhnika lipidologii (Lipidology Technique), Moscow: Mir, 1975.

  19. Klokov, M.V., The birthplace of Marenovi – Rubiaceae Juss., Flora URSR (Flora URSR), Kiev: Akad. Nauk URSR, 1961, vol. 10, pp. 90–249, 455–474.

  20. Kobayashi, K., Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development, J. Plant Res., 2016, vol. 129, pp. 565–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Labudda, M., Lipid peroxidation as a biochemical marker for oxidative stress during drought. An effective tool for plant breeding, 2013, pp. 1–12. http://www.e-wydawnictwo.eu/Document/DocumentPreview/3342.

  22. Lambers, H. and Oliveira, R.S., Plant Physiological Ecology, Switzerland: Springer Nature, 2019.

    Book  Google Scholar 

  23. Lichtenthaler, H.K., Chlorophyll and carotenoids: pigments of photosynthetic biomembranes, Methods Enzimol., 1987, vol. 48, pp. 331–382.

    Google Scholar 

  24. Liu, X., Ma, D., Zhang, Z., Wang, S., Du, S., Deng, X., and Yin, L., Plant lipid remodeling in response to abiotic stresses, Environ. Exp. Bot., 2019, vol. 165, pp. 174–184.

    Article  CAS  Google Scholar 

  25. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, no. 1, pp. 265–275.

    Article  CAS  PubMed  Google Scholar 

  26. Ostapko, V.M., Etologicheskie, populyatsionnye i tsenoticheskie osnovy fitosozologii na yugo-vostoke Ukrainy (Ethological, Population and Coenotic Foundations of Phytosiology in the South-East of Ukraine), Donetsk: Lebed, 2005.

  27. Ostapko, V.M., A new species of bedstraw – Galium × jubilaeare Ostapko (Rubiaceae), Prom. Bot., 2020, vol. 20, no. 3, pp. 4–7.

    Google Scholar 

  28. Pinzhenina, E.A., Signs of vegetative and generative organs in the taxonomy of the genus Galium L. (Rubiaceae Juss.), Probl. Bot. Yuzhn. Sib. Mong., 2019, vol. 18, no. 1, pp. 162–165.

    Google Scholar 

  29. Plaksina, T.I., Konspekt flory Volgo-ural’skogo regiona (Synopsis of the Flora of the Volga-Ural Region), Samara: Samara Univ., 2001.

    Google Scholar 

  30. Pobedimova, E.G., The genus Galium L., in Flora SSSR (Flora of the USSR), Moscow: Akad. Nauk SSSR, 1958, vol. 23, pp. 287–381.

  31. Rieseberg, L.H. and Carney, S.E., Plant hybridization, New Phytol., 1998, vol. 140, no. 4, pp. 599–624.

    Article  PubMed  Google Scholar 

  32. Robbrecht, E., Tropical woody Rubiaceae. Characteristic features and progressions. Contribution to a new subfamilial classification, Opera Bot. Belg., 1988, vol. 1, pp. 1–272.

    Google Scholar 

  33. Rodionov, A.V., Amosova, A.V., Belyakov E.A., Zhurbenko P.M., Mikhailova, Yu.V., Punina, E.O., Shneer, V.S., Loskutov, I.G. and Muravenko, O.V., Genetic consequences of interspecific hybridization, its role in speciation and phenotypic diversity of plants, Russ. J. Genet., 2019, vol. 55, pp. 278–294.

    Article  CAS  Google Scholar 

  34. Rozentsvet, O., Kosobryukhov, A., Zakhozhiy, I., Tabalenkova, G., Nesterov, V., and Bogdanova, E., Photosynthetic parameters and redox homeostasis of Artemisia santonica L. under conditions of Elton region, Plant Physiol. Biochem., 2017, vol. 118, p. 385e393.

  35. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Structural, physiological, and biochemical aspects of salinity tolerance of halophytes, Russ. J. Plant Physiol., 2017, vol. 64, pp. 464–477.

    Article  CAS  Google Scholar 

  36. Rozentsvet, O.A., Nesterov, V.N., and Bogdanova, E.S., Lipids of halophyte species growing in lake Elton region (South East of the European part of Russia), in Handbook of Halophytes, from Molecules to Ecosystems Towards Biosaline Agriculture, Grigore, M.N., Ed., 2020, pp. 1–25.

    Google Scholar 

  37. Son, D.C. and Chang, K.S., Effective typification of Galium verum var. hallaensis, a replacement name for the Korean G. pusillum (Rubiaceae), Phytotaxa, 2019, vol. 423, no. 5, pp. 289–292.

    Article  Google Scholar 

  38. Testerink, C. and Munnik, T., Molecular, cellular, and physiological responses to phosphatidic acid formation in plants, J. Exp. Bot., 2011, vol. 62, no. 7, pp. 2349–2361.

    Article  CAS  PubMed  Google Scholar 

  39. Tsvelev, N.N., On the significance of hybridization in the evolution of higher plants, in Problemy teoreticheskoi morfologii i evolyutsii vysshikh rastenii (Problems of Theoretical Morphology and Evolution of Higher Plants), Moscow, 2005, pp. 143–150.

  40. Uchiyama, M. and Mihara, M., Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem., 1978, vol. 86, pp. 271–278.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was performed as part of the “Structure, Dynamics, and Suitable Development of Ecosystems of the Volga Basin,” research plan, no. 1021060107217-0-1.6.19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Bogdanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozentsvet, O.A., Bogdanova, E.S., Nesterov, V.N. et al. Structural and Functional Features of Galium × affrenum (Klokov) Ostapko (Rubiaceae) in Comparison with Its Parental Species. Contemp. Probl. Ecol. 16, 322–329 (2023). https://doi.org/10.1134/S1995425523030113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523030113

Keywords:

Navigation