Skip to main content
Log in

Reaction of the Lichen Hypogymnia physodes to Dust Pollution in the Influence Zone of the Middle Timan Bauxite Mine

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Here we present the results of long-term monitoring (2002–2017) of epiphytic lichen Hypogymnia physodes in the zone of influence of the Middle Timan bauxite mine (MTBM) (Komi Republic). Dust with a predominance of Al and Fe is the main environmental pollutant in this area. Three periods of the response of lichen to dust pollution are identified: shock, maximum changes, and adaptation. The dust pollution significantly reduced the projective cover of the species under study, increased the frequency of thallus necrosis, and decreased thallus linear dimensions. In the 10 years after we started our monitoring studies, the parameters of the vital state of H. physodes began to stabilize and then improve due to the adaptation of the lichen to chronic environmental pollution with dust. The study of changes in the content of main pollutants showed that, during the mining operation, they accumulate in the thalli of the lichen H. physodes in the following order: Al > Fe > Ni > Cu > Pb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Afanasenko, O.V., Barmin, A.V., Potapova, M.A., and Zemlyansky, V.N., Studies on ecological safety and impact monitoring of pollution sources on the territory of the Middle Timan Bauxite Mine OSC “Timan Bauxite”, Izv. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2010, no. 2, pp. 44–47.

  2. Atlas Respubliki Komi (Atlas of the Komi Republic), Moscow: Feoria, 2011.

  3. Balabanova, B., Stafilov, T., Šajn, R., and Bačeva, K., Comparison of response of moss, lichens and attic dust to geology and atmospheric pollution from copper mine, Int. J. Environ. Sci. Technol., 2014, no. 11, pp. 517–528. https://doi.org/10.1007/s13762-013-0262-8

  4. Bargagli, R. and Barghigiani, C., Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy, Environ. Monit. Assess., 1991, vol. 16, no. 3, pp. 265–275. https://doi.org/10.1007/BF00397614

    Article  CAS  PubMed  Google Scholar 

  5. Bargagli, R. and Nimis, P.L., Guidelines for the use of epiphytic lichens as biomonitors of atmospheric deposition of trace elements, in Monitoring with Lichens – Monitoring Lichens, Dordrecht: Kluwer Acad. Publ., 2002, pp. 295–300. https://doi.org/10.1007/978-94-010-0423-7_23

    Book  Google Scholar 

  6. Bettinelli, M., Spezia, S., and Bizzarri, G., Trace element determination in lichens by ICP-MS, At. Spectrosc., 1996, vol. 17, no. 3, pp. 133–141.

    CAS  Google Scholar 

  7. Białońska, D. and Dayan, F.E., Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region, J. Chem. Ecol., 2005, vol. 31, no. 12, pp. 2975–2991. https://doi.org/10.1007/s10886-005-8408-x

    Article  CAS  PubMed  Google Scholar 

  8. Byazrov, L.G., Lishainiki v ekologicheskom monitoringe (Lichens in Ecological Monitoring), Moscow: Nauchny Mir, 2002.

  9. Conti, M.E., Tudino, M., Stripeikis, J., and Cecchetti, G., Heavy metal accumulation in the lichen Evernia prunastri transplanted at urban, rural and industrial sites in Central Italy, J. Atm. Chem., 2004, vol. 49, pp. 83–94.

    Article  CAS  Google Scholar 

  10. Degtjarenko, P., Matos, P., Marmor, L., Branquinho, C., and Randlane, T., Functional traits of epiphytic lichens respond to alkaline dust pollution, Fungal Ecol., 2018, vol. 36, pp. 81–88. https://doi.org/10.1016/j.funeco.2018.08.006

    Article  Google Scholar 

  11. Dorozhkina, M.V., Pavlova, Ye.Yu., and Budnikova, L.L., Heavy metals in lichens and soils of Monchegorsk (Kola Peninsula), The AMAP International Symposium on Environmental Pollution of the Arctic and the Third International Conference on Environmental Radioactivity in the Arctic, Tromsoe, 1997, vol. 1, pp. 359–362.

  12. Egoshina, T.L. and Shikhova, L.N., Lead in soils and plants of the European North-East of Russia, Vestn. Orenb. Gos. Univ., 2008, vol. 10, no. 92, pp. 135–141.

    Google Scholar 

  13. Garty, J., Biomonitoring atmospheric heavy metals with lichens: theory and application, Crit. Rev. Plant Sci., 2001, vol. 20, pp. 309–371. https://doi.org/10.1016/S0735-2689(01)80040-X

    Article  CAS  Google Scholar 

  14. Glenn, M.G., Gomez-Bolea, A., Lobello, R., and Orsi, E.V., Effects of thallus damage on interactions of lichens with non-lichenized fungi under natural and laboratory conditions, Lichenologist, 1997, vol. 29, pp. 51–65.

    Article  Google Scholar 

  15. Golovko, T.K., Shelyakin, M.A., Zakhozhy, I.G., Tabalenkova, G.N., and Pystina, T.N., Reaction of lichens to the environmental pollution by bauxite ore extraction in the taiga zone, Theor. Appl. Ecol., 2018, no. 2, pp. 44–53. https://doi.org/10.25750/1995-4301-2018-2-044

  16. Gorshkov, V.V., Destruction of the epiphytic lichen cover on pine trunks in pine forests of the Kola Peninsula under impact of atmospheric pollution, Ecology, 1991, no. 4, pp. 20–27.

  17. Hawksworth, D.L. and Rose, F., Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens, Nature, 1970, vol. 227, pp. 145–148.

    Article  CAS  PubMed  Google Scholar 

  18. ICP Forests Manual. Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests, Hamburg: Progr. Coord. Centre Fed. Res. Centre For. For.Prod. (BFH), Germany, 1997.

  19. Insarova, I.D., Impact of sulfur dioxide on lichens, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems on Ecological Monitoring and Ecosystem Simulation), Leningrad: Hydrometeoizdat, 1982, vol. 5, pp. 33–48.

  20. Isachenko, T.I. and Lavrenko, E.M., Botanical-geographical zoning, Rastitel’nost’ evropejskoi chasti SSSR (Vegetation of the European USSR), Leningrad: Nauka, 1980, pp. 10–20.

    Google Scholar 

  21. Jóźwiak, M.A. and Jóźwiak, M., Influence of cement industry on accumulation of heavy metals in bioindicators, Ecol. Chem. Eng., 2009, vol. 16, pp. 323–334.

    Google Scholar 

  22. Kauppi, M. and Halonen, P., Lichens as indicators of air pollution in Oulu, northern Finland, Ann. Bot. Fenn., 1992, vol. 29, pp. 1–9.

    CAS  Google Scholar 

  23. Khrenov, V.Ya., Microelements in plants of undisturbed landscapes of the North, in Problemy geografii i ekologii Zapadnoi Sibiri (Problems of Geography and Ecology of Western Siberia), Tyumen: Tyumen. Gos. Univ., 1996, pp. 100–112.

  24. Kirilyuk, L.I., Buganov, A.A., Bakhtina, T.N., and Zakharina, T.N., Heavy metals in plants of natural and urban landscapes, Forestry, 2004, no. 6, pp. 19–20.

  25. Klos, A., Rajfur, M., Waclawek, M., and Waclawek, W., Heavy metal sorption in the lichen cationactive layer, Bioelectrochemistry, 2007, vol. 71, no. 1, pp. 60–65.

    Article  Google Scholar 

  26. Koroleva, Yu.V. and Revunkov, V.A., Content of trace elements in the lichen Hypogymnia physodes in the forests of the Kaliningrad region, Vestn. Balt. Fed. Univ. im I. Kanta, Ser.: Estestv. Med. Nauki, 2016, no. 1, pp. 85–94.

  27. Kotova, O.B. and Vakhrushev, A.V., Timan bauxites: mineralogical and technological specifications, Vestn. Inst. Geol. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2011, no. 3, pp. 12–16.

  28. Krasnogorskaya, N.N., Zhuravleva, S.E., and Minnullina, G.R., Lichenoindicative quality assessment scales of the atmospheric air, Fundam. Issled., 2004, no. 5, pp. 38–42.

  29. Lee, K.Y., Ho L.Y., Tan, K.H., Tham, Y.Y., Ling, S.P., Qureshi, A M., Ponnudurai, T., and Nordin, R., Environmental and occupational health impact of bauxite mining in Malaysia. A review, Int. Med. J. Malaysia, 2017, vol. 16, no. 2, pp. 137–150. https://doi.org/10.31436/IMJM.V16I2.346

    Article  Google Scholar 

  30. Lesa Respubliki Komi (Forests of the Komi Republic), Kozubov, G.M. and Taskaev, A.I., Eds., Moscow: Dizain. Informatsiya. Kartografiya, 1999.

    Google Scholar 

  31. Lodygin, E.D., Content of acid-soluble copper and zinc forms in background soils of the Komi Republic, Eurasian Soil Sci., 2018, vol. 51, no. 11, pp. 1322–1329.

    Article  Google Scholar 

  32. Loppi, S., Licheni come bioaccumulatori di elementi in traccia: stato della ricerca in Italia, Biologia Ambientale, 2006, vol. 20, no. 2, pp. 69–78.

    Google Scholar 

  33. Loppi, S., Putortì, E., De Dominicis, V., and Barbaro, A., Lichens as bioindicators of air quality near a municipal solid waste incineration plant in central Italy, Allionia, 1995, vol. 33, pp. 121–129.

    Google Scholar 

  34. Malysheva, N.V., About the ecological patho-morphology of lichens in the vicinity of Sankt-Petersburg, Nov. Sist. Nizshikh Rast., 1995, vol. 30, pp. 78–85.

    Google Scholar 

  35. Mikhailova, I.N. and Kshnyasev, I.A., Content of heavy metals in thalli of the lichen Hypogymnia physodes: source of heterogenety, Contemp. Probl. Ecol., 2012, vol. 5, no. 3, pp. 314–318.

    Article  Google Scholar 

  36. Mikhailova, I.N. and Vorobeichik, E.L., Epiphyte lichen-sinusias in conditions of chemical pollution: dose-effect relationships, Ecologia, 1995, no. 6, pp. 455–460.

  37. Mikhailova, I.N. and Vorobeichik, E.L., Size and age population structure of the epiphyte lichen Hypogymnia physodes (L.) Nyl. in conditions of atmospheric pollution, Ecologia, 1999, no. 2, pp. 130–137.

  38. Nilson, E.M. and Martin, L.N., Epiphyte lichens in conditions of acid and alkaline pollution, in Vzaimodeistvie lesnykh ekosistem i atmosfernykh zagryaznitelei (Interaction of Forest Ecosystems and Atmospheric Pollutants), Tallinn: Akad. Nauk SSSR, 1982, pp. 88–100.

  39. Novakovskiy, A.B., Interaction of Excel and statistical package R for data processing in ecology, Vestn. Inst. Biol. Komi Nauchn. Tsentra Ural. Otd. Ross. Akad. Nauk, 2016, vol. 3, no. 197, pp. 26–33.

    Google Scholar 

  40. Paoli, L., Corsini, A., Bigagli, V., Vannini, J., Bruscoli, C., and Loppi, S., Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens, Environ. Pollut., 2012, vol. 161, pp. 70–75. https://doi.org/10.1016/j.envpol.2011.09.028

    Article  CAS  PubMed  Google Scholar 

  41. Paoli, L., Guttová, A., Grassi, A., Lackovičová, A., Senko, D., and Loppi, S., Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia), Ecol. Indic., 2014, vol. 40, pp. 127–135.

    Article  CAS  Google Scholar 

  42. Perkins, D.F., Relationship between fluoride contents and loss of lichens near an aluminium works, Water, Air, Soil Pollut., 1992, vol. 64, nos. 3–4, pp. 503–510.

    Article  CAS  Google Scholar 

  43. Piervittori, R., Usai, L., Alessio, F., and Maffei, M., The effect of simulated acid rain on surface morphology and n-alkane composition of Pseudevernia furfuracea, Lichenologist, 1997, vol. 29, pp. 191–198.

    Article  Google Scholar 

  44. Poličnik, H., Batič, F., and Ribarič, L.C., Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.), J. Atm. Chem., 2004, vol. 49, pp. 223–230.

    Article  Google Scholar 

  45. Rai, P.K., Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring, Ecotoxicol. Environ. Saf., 2016, vol. 129, pp. 120–136.

    Article  CAS  PubMed  Google Scholar 

  46. Santamaría, J.M. and Martín, A., Tree bark as a bioindicator of air pollution in Navarra, Spain, Water, Air, Soil Pollut., 1997, vol. 98, pp. 381–387.

    Article  Google Scholar 

  47. Skye, E., Lichens as biological indicators of air pollution, Annu. Rev. Phytopathol., 1979, vol. 17, pp. 325–341.

    Article  Google Scholar 

  48. Sujetoviene, G., Monitoring lichen as indicators of atmospheric quality, in Recent Advances in Lichenology, Modern Methods and Approaches in Biomonitoring and Bioprospection, Upreti, D.K., Divakar, P.K., and Shukla, V., Eds., Springer-Verlag, 2015, pp. 87–118. https://doi.org/10.1007/978-81-322-2181-4

    Book  Google Scholar 

  49. Trass, Kh.Kh., Paleo-tolerance classes of lichens and the ecological monitoring, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems of Ecological Monitoring and Ecosystem Modeling), Leningrad: Hydrometeoizdat, 1985, vol. 7, pp. 122–137.

  50. Vainshtein, E.A., Seasonal fluctuations in the physiological activity of the Trebouxia phycobiont from Hypogymnia physodes, 7-ya konferentsiya po sporovym rasteniyam Srednei Azii i Kazakhstana (7th Conf. on Spore Plants of the Middle Asia and Kazakhstan), Alma-Ata, 1984, pp. 345–346.

  51. Van Dobben, H.F. and Braak, C.J.F., Ranking of epiphytic lichen sensitivity to air pollution using survey data: a comparison of indicator scales, Lichenologist, 1999, vol. 31, pp. 27–39.

    Article  Google Scholar 

  52. Van Herk, C.M., Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time, Lichenologist, 2001, vol. 33, pp. 419–441. https://doi.org/10.1006/lich.2001.0337

    Article  Google Scholar 

  53. Vasilevich, M.I. and Vasilevich, R.S., 2018. Features of heavy metal accumulation by epiphytic lichens in background areas of the taiga zone in the European Northwest of Russia, Russ. J. Ecol., vol. 49, no. 1, pp. 14–20. https://doi.org/10.1134/S1067413618010137

    Article  CAS  Google Scholar 

  54. Westman, L., Air pollution and vegetation around a sulphite mill at Örnsköldsvick, North Sweden: pollutants and plant communities on exposed rocks, Wahlenbergia, 1975, vol. 2, pp. 1–146.

    Google Scholar 

  55. Zvereva, E.L., Toivonen, E., and Kozlov, M.V., Changes in species richness of vascular plants under the impact of air pollution: a global perspective, Global Ecol. Biogeogr., 2008, vol. 17, pp. 305–319.

    Article  Google Scholar 

Download references

Funding

This study was performed as part of a State Task of the Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Pystina.

Ethics declarations

The authors declare that they have no conflict of interest.

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by N. Ruban

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pystina, T.N., Kuznetsova, E.G. & Novakovskiy, A.B. Reaction of the Lichen Hypogymnia physodes to Dust Pollution in the Influence Zone of the Middle Timan Bauxite Mine. Contemp. Probl. Ecol. 16, 379–389 (2023). https://doi.org/10.1134/S1995425523030101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523030101

Keywords:

Navigation