Skip to main content
Log in

Some Approaches to the Recovery of Baikal Sponge Populations: A Review

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The unique ecosystem of Lake Baikal is composed of diverse and mainly endemic flora and fauna. The sponge fauna of Baikal is represented by two families, endemic Lubomirskiidae and cosmopolitan Spongillidae. In recent years, the situation with Lake Baikal has been characterized as catastrophic, especially in the littoral zone. There are numerous reports about the suppressed state of Baikal sponges and a decrease in the magnitudes of their populations in many lake areas. Scientists insist that not only nature-conservative, but also nature-restoring measures are required. This review discusses the basic known sponge cultivation techniques and approaches. Four main approaches to the ex situ and in situ sponge cultivation in the global practice are described in the most detail: (1) cultivation from larvae, (2) cultivation from primmorphs (sponge cell cultures), (3) cultivation from resting stages (gemmules and reduction bodies), and (4) cultivation from explants (fragments of living tissues detached from a parent organism). Attempts to use the described common approaches for the cultivation of Baikal sponges are also discussed. Based on the analysis of existing publications, we assume that the use of the most effective of the abovementioned approaches will make it possible to develop a technology for cultivating Baikal sponges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Bart, M.C., de Vet, S.J., de Bakker, D.M., Alexander, B.E., van Oevelen, D., van Loon, E.E., et al., Spiculous skeleton formation in the freshwater sponge Ephydatia fluviatilis under hypergravity conditions, PeerJ, 2019, vol. 6, pp. 1–18.

    Article  Google Scholar 

  2. Becerro, M.A., Uriz, M.J., Maldonado, M., and Turon, X., Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology, Oxford: Elsevier, 2012, vol. 62.

    Google Scholar 

  3. Belarbi, El.H., Gómez, A.C., Chisti, Y., Camacho, F.G., and Grima, E.M., Producing drugs from marine sponges, Biotechnol. Adv., 2003, vol. 21, no. 7, pp. 585–598.

    Article  CAS  PubMed  Google Scholar 

  4. Belikov, S.I., Belkova, N., Butina, T., Chernogor, L., Martynova-Van Kley, A., et al., Diversity and shifts of the bacterial community associated with Baikal sponge mass mortalities, PLoS One, 2019, vol. 14, no. 3, pp. 1–19.

    Article  Google Scholar 

  5. Belykh, O.I., Tikhonova, I.V., Kuzmin, A.V., Sorokovikova, E.G., Fedorova, G.A., Khanaev, I.V, Sherbakova, T.A., and Timoshkin, O.A., First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins, Toxicon, 2016, vol. 121, pp. 36–40.

    Article  CAS  PubMed  Google Scholar 

  6. Belykh, O.I., Fedorova, G.A., Kuzmin, A.V., Tikhonova, I.V., Timoshkin, O.A., and Sorokovikova, E.G., Microcystins in cyanobacterial biofilms from the littoral zone of Lake Baikal, Mosc. Univ. Biol. Sci. Bull., 2019, vol. 72, no. 4, pp. 225–231.

    Article  Google Scholar 

  7. Bierwirth, J., Mantas, T.P., Villechanoux, J., and Cerrano, C., Restoration of marine sponges – What can we learn from over a century of experimental Cultivation?, Water, 2022, vol. 14, p. 1055.

    Article  Google Scholar 

  8. Bondarenko, N.A., Ozersky, T., Obolkina, L.A., Tikhonova, I.V., Sorokovikova, E.G., Sakirko, M.V., Potapov, S.A., Blinov, V.V, Zhdanov, A.A., and Belykh, O.I., Recent changes in the spring microplankton of Lake Baikal, Russia, Limnologica, 2019, vol. 75, pp. 19–29.

    Article  CAS  Google Scholar 

  9. Bondarenko, N.A., Tomberg, I.V., Shirokaya, A.A., Belykh, O.I., Tikhonova, I.V., Fedorova, G.A., et al., Dolichospermum lemmermannii (Nostocales) bloom in world’s deepest Lake Baikal (East Siberia): abundance, toxicity and factors influencing growth, Limnol. Freshwater Biol., 2021, no. 1, pp. 1101–1110.

  10. Bukshuk, N.A., Ecological features of endemic sponges of Lake Baikal: distribution and life cycles, Dissertation, Irkutsk: N. A. Bukshuk, 2014.

  11. Bukshuk, N.A. and Maikova, O.O., A new species of Baikal endemic sponges (Porifera, Demospongiae, Spongillida, Lubomirskiidae), ZooKeys, 2020, vol. 906, pp. 113–130.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Calheira, L., Lanna, E., and Pinheiro, U., Tropical freshwater sponges develop from gemmules faster than their temperate‑region counterparts, Zoomorphology, 2019, vol. 138, no. 4, pp. 425–436.

    Article  Google Scholar 

  13. Carballo, J.L., Yañez, B., Zubía, E., Ortega, M.J., and Vega, C., Culture of explants from the sponge Mycale cecilia to obtain bioactive mycalazal-type metabolites, Mar. Biotechnol., 2010, vol. 12, no. 5, pp. 516–525.

    Article  CAS  Google Scholar 

  14. Chernogor, L.I., Denikina, N.N., Belikov, S.I., and Ereskovsky, A.V., Long-term cultivation of primmorphs from freshwater Baikal sponges Lubomirskia baikalensis, Mar. Biotechnol., 2011, vol. 13, no. 4, pp. 782–792.

    Article  CAS  Google Scholar 

  15. Chernogor, L., Klimenko, E., Khanaev, I., and Belikov, S., Microbiome analyss of healthy and diseased sponges Lubomirskia baicalensis by using cell cultures of primmorphs, PeerJ, 2020, vol. 8, p. e9080.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chopin, T., Integrated multitrophic aquaculture – ancient, adaptable concept focuses on ecological integration, Global Aquacult. Advocate, 2013, vol. 16, pp. 16–19.

    Google Scholar 

  17. Custodio, M.R., Prokic, I., Steffen, R., Koziol, C., Borojevic, R., Brümmer, F., Nickel, M., and Müller, W.E.G., Primmorphs generate from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death, Mech. Ageing Dev., 1998, vol. 105, nos. 1–2, pp. 45–59.

    Article  CAS  PubMed  Google Scholar 

  18. de Caralt, S., Agell, G., and Uriz, M., Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity, Biomol. Eng., 2003, vol. 20, nos. 4–6, pp. 339–347.

    Article  CAS  PubMed  Google Scholar 

  19. de Caralt, S., Uriz, M.J., and Wijffels, R.H., Cultivation of sponge larvae: settlement, survival, and growth of juveniles, Mar. Biotechnol., 2007, vol. 9, no. 5, pp. 592–605.

    Article  Google Scholar 

  20. Duckworth, A., Battershil, C.N., and Schiel, D.R., Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons, Aquaculture, 2004, vol. 242, pp. 237–250.

    Article  Google Scholar 

  21. Duckworth, A., Farming sponges to supply bioactive metabolites and bath sponges: A review, Mar. Biotechnol., 2009, vol. 11, no. 6, pp. 669–679.

    Article  CAS  Google Scholar 

  22. Efremova, S.M., Porifera, in Index of Animal Species Inhabiting Lake Baikal and Its Catchment Area, Timoshkin, O.A., Ed., Novosibirsk: Nauka, 2001, pp. 179–192.

    Google Scholar 

  23. Ereskovsky, A.V., The Comparative Embryology of Sponges, Springer-Verlag.

  24. Ereskovsky, A.V., Chernogor, L.I., and Belikov, S.I., Ultrastructural description of development and cell composition of primmorphs in the endemic Baikal sponge Lubomirskia baicalensis, Zoomorphology, 2015, vol. 135, no. 1, pp. 1–17.

    Article  Google Scholar 

  25. Ereskovsky, A., Borisenko, I.E., Bolshakov, F.V., and Lavrov, A.I., Whole-body regeneration in sponges: diversity, fine mechanisms, and future prospects, Genes, 2021, vol. 12, p. 506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Funayama, N., Nakatsukasa, M., Hayashi, T., and Agata, K., Ephydatia fluviatilis and its lineage marker, Ef annexin, Dev. Growth Differ., 2005, vol. 47, no. 4, pp. 243–253.

    Article  CAS  PubMed  Google Scholar 

  27. Funayama, N., The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells), Dev. Genes Evol., 2013, vol. 223, nos. 1–2, pp. 23–38.

    Article  PubMed  Google Scholar 

  28. Glysina, O.Yu., Glysin, A.V., and Shilyannikova, T.A., Life strategies of Baikalian sponge Lubomirskia baicalensis, Izv. Irkutsk. Gos. Univ., Ser. Biol. Ekol., 2013, vol. 6, pp. 82–86

    Google Scholar 

  29. Gureeva, M.A., Sexual reproduction of Baikal sponges, Dokl. Acad. Sci. SSSR, 1968, no. 5, pp. 1253–1254.

  30. Humphreys, T., Chemical dissolution and in vitro reconstruction of sponge cell adhesions, Dev. Biol., 1963, vol. 8, no. 1, pp. 27–47.

    Article  CAS  PubMed  Google Scholar 

  31. Karlep, L., Reintamm, T., and Kelve, M., Intragenomic profiling using multicopy genes: The rDNA internal transcribed spacer sequences of the freshwater sponge Ephydatia fluviatilis, PLoS One, 2013, vol. 8, no. 6, pp. 1–12.

    Article  Google Scholar 

  32. Khanaev, I.V., Kravtsova, L.S., Maikova, O.O., Bukshuk, N.A., Sakirko, M.V., Kulakova, N.V., Butina, T.V., Nebesnykh, I.A., and Belikov, S.I., Current state of the sponge fauna (Porifera: Lubomirskiidae) of Lake Baikal: Sponge disease and the problem of conservation of diversity, J. Great Lakes Res., 2018, vol. 44, pp. 77–85.

    Article  Google Scholar 

  33. Kozhov, M.M., About the benthos of south Baikal, Bull. Sci.-Res. Biol. Geogr. Inst. Irkutsk State Univ., 1970, vol. 23, pp. 3–12.

    Google Scholar 

  34. Kozhov, M.M. and Tomilov, A.A., To understanding of the Lake Baikal plankton, Proc. Biol. Geogr. Inst. Irkutsk State Univ., 1965, vol. 18, nos. 1–2, pp. 3–17.

  35. Kupchinsky, A.B., Fialkov, V.A., Zhdanova, G.O., Gorbunova, Yu.O., and Stom, D.I., Absorption of microorganisms by Lubomirskiidae sponges, in International Multidisciplinary Scientific GeoConference: SGEM, Sofia, 2019. https://doi.org/10.5593/sgem2019/3.1/S12.001

  36. Lavrov, A.I. and Kosevich, I.A., Sponge cell reaggregation: cellular structure and morphogenetic potencies of multicellular aggregates, J. Exp. Zool., part A, 2016, vol. 325, no. 2, pp. 158–177.

    Google Scholar 

  37. Maikova, O.O, Kravtsova, L.S., and Khanaev, I.V., Baikal endemic sponges in the system of ecological monitoring, Limnol. Freshwater Biol., 2020, vol. 1, pp. 364–367.

    Article  Google Scholar 

  38. Maldonado, M., The ecology of the sponge larva, Can. J. Zool., 2006, vol. 84, no. 2, pp. 175–194.

    Article  Google Scholar 

  39. Maldonado, M. and Young, C.M., Effects of the duration of larval life on postlarval stages of the demosponge Sigmadocia caerulea, J. Exp. Mar. Biolo. Ecol., 1999, vol. 232, no. 1, pp. 9–21.

    Article  Google Scholar 

  40. Moscona, A.A., Studies on cell aggregation: demonstration of materials with selective cell-binding activity, Proc. Natl. Acad. Sci. U. S. A.,1963, vol. 49, no. 5, pp. 742–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Müller, W.E.G., Wiens, M., Batel, R., Steffen, R., Schröder, H.C., Borojevic, R., and Custodio, M.R., Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula, Mar. Ecol. Prog. Ser., 1999, vol. 178, pp. 205–219.

    Article  Google Scholar 

  42. Müller, W.E.G., Belikov, S.I., Kaluzhnaya, O.V., Perović-Ottstadt, S., Fattorusso, E., Ushijima, H., Krasko, A., and Schröder, H.C., Cold stress defense in the freshwater sponge Lubomirskia baicalensis, FEBS J., 2007, vol. 274, pp. 23–36.

    Article  PubMed  Google Scholar 

  43. Pile, A.J., Patterson, M.R., Savarese, M., Chernykh, V.I., and Fialkov, V.A., Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux, Limnol. Oceanogr., 1997, vol. 42, no. 1, pp. 178–184.

    Article  CAS  Google Scholar 

  44. Poirrier, M.A., Francis, J.C., and La Biche, R.A., A continuous-flow system for growing fresh-water sponges in the laboratory, Hydrobiologia, 1981, vol. 79, no. 3, pp. 255–259.

    Article  Google Scholar 

  45. Potemkina, T.G., Potemkin, V.L., and Fedotov, A.P., Climatic factors as risks of recent ecological changes in the shallow zone of Lake Baikal, Russ. Geol. Geophys., 2018, vol. 59, pp. 556–565.

    Article  Google Scholar 

  46. Rady, H.M., Shoukr, F.A., El Komi, M.M., El Bossery, A.M., and Ezz El-Arab, M.A., Establishment of primmorphs from three Red Sea sponge species, Pharm. J., 2016, vol. 15, no. 2, pp. 48–54.

    Google Scholar 

  47. Rasmont, R., Chapter 5 freshwater sponges as a material for the study of cell differentiation dedicated to the memory of Paul Brien., in Current Topics in Developmental Biology, Moscona, A.A. and Monroy, A., Eds., Acad. Press, 1975, vol. 10, pp. 141–159.

  48. Schill, R.O., Pfannkuchen, M., Fritz, G., Köhler, H., and Brümmer, F., Quiescent gemmules of the freshwater sponge, Spongilla lacustris (Linnaeus, 1759) contain remarkably high levels of Hsp70 stress protein and hsp 70 stress gene mRNA, J. Exp. Zool., Part A, 2006, vol. 305, no. 5, pp. 449–457.

    Google Scholar 

  49. Semiturkina, N.A., Efremova, S.M., and Timoshkin, O.A., The degree of knowledge of the biodiversity and ecology of the spongiofauna of Lake Baikal with an emphasis on diversity, ecological features and the vertical distribution of sponges at the site near Cape Berezovy, in Annotirovannyi spisok fauny ozera Baikal i ego vodosbornogo basseina (Annotated List of the Fauna of Lake Baikal and its Drainage Basin), Timoshkin, O.A., Ed., Novosibirsk: Science, 2009, pp. 891–901.

  50. Simpson, T.L., The Cell Biology of Sponge, Springer-Verlag.

  51. Song, Y., Qu, Y., Cao, X., Zhang, W., Zhang, F., Linhardt, R.J., and Yang, Q., Cultivation of fractionated cells from a bioactive-alkaloid-bearing marine sponge Axinella sp., In Vitro Cell. Dev. Biol., Anim., 2021, vol. 57, pp. 539–549.

    Article  CAS  PubMed  Google Scholar 

  52. Sorokovikova, L.M., Tomberg, I.V., Sinyukovich, V.N., and Ivanov, V.G., Dynamics of nutrient concentrations and eutrophication of the waters in Barguzin Bay (Lake Baikal), Limnol. Freshwater Biol., 2020, vol. 4, pp. 890–891.

    Article  Google Scholar 

  53. Soubigou, A., Ross, E.G., Touhami, Y., Chrismas, N., and Modepalli, V., Regeneration in sponge Sycon ciliatum mimics postlarval development, Development, 2020, vol. 147, no. 22, p. dev193714.

    Article  CAS  PubMed  Google Scholar 

  54. Wilson, H.V., On the feasibility of raising sponges from the egg, Fish Comm. Bull., 1898, vol. 16, pp. 241–245.

    Google Scholar 

  55. Xue, L. and Zhang, W., Growth and survival of early juveniles of the marine sponge Hymeniacidon perlevis (Demospongiae) under controlled conditions, Mar. Biotechnol., 2009, vol. 11, pp. 640–649.

    Article  CAS  Google Scholar 

  56. Zhang, W., Zhang, X., Cao, X., Xu, J., Zhao, Q., Yu, X., Jin, M., and Deng, M., Optimizing the formation of in vitro sponge primmorphs from the Chinese sponge Stylotella agminata (Ridley), J. Biotechnol., 2003, vol. 100, no. 2, pp. 161–168.

    Article  CAS  PubMed  Google Scholar 

  57. Zvereva, Yu., Medvezhonkova, O., Naumova, T., Sheveleva, N., Lukhnev, A., Sorokovikova, E., Evstigneeva, T., and Timoshkin, O.A., Variation of sponge‑inhabiting infauna with the state of health of the sponge Lubomirskia baikalensis (Pallas, 1776) in Lake Baikal, Limnology, 2019, vol. 20, pp. 267–277.

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic research and the Ministry of Education, Culture, Science, and Sports of Mongolia (project no. 20-54-44012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Stom.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Topchiy, I.A., Stom, D.I., Tolstoy, M.Y. et al. Some Approaches to the Recovery of Baikal Sponge Populations: A Review. Contemp. Probl. Ecol. 16, 1–7 (2023). https://doi.org/10.1134/S1995425523010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523010092

Keywords:

Navigation