Skip to main content
Log in

Peculiarities of the Response of the Balsamic Poplar Assimilation Apparatus to the Aerotechnogenic Impact of Aluminum Production Emissions

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The reactions of leaves of balsam poplar (Populus balsamifera L.) to the impact of emissions of aluminum smelters have been analyzed. The results of a comparative analysis of mineral phase distribution on the surface of poplar leaves on the influence zone of Bratsk, Irkutsk, Sayanogorsk, Krasnoyarsk, and Novokuznetsk aluminum smelters are presented. Newly formed minerals, similar in composition to fluorite and gypsum, are found in the stomata of poplar leaves. Calcite crystals are found in large quantities in the conductive system of leaves. The formation of a biogeochemical calcium barrier in the stomata of poplar leaves, through which the neutralization of fluorine and sulfur compounds into inert minerals, is assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Alekseenko, V.A., Ekologicheskaya geokhimiya: uchebnik (Environmental Geochemistry: Textbook), Moscow: Logos, 2000.

  2. Alekseenko, V.A., Primary factors of accumulation of chemical elements by organisms, Sorosovskii Obraz. Zh., 2001, vol. 7, no. 8, pp. 20–24.

    Google Scholar 

  3. Anjos, T.B.O., Louback, E., Azevedo, A.A., and Silva, C.L., Sensibility of Spondias purpurea L. (Anacardiaceae) exposed to fluoride-simulated fog, Ecol. Indic., 2018, vol. 90, pp. 154–163.

    Article  CAS  Google Scholar 

  4. Bakhtin, A.I., Kol’chugin, A.N., and Eskin, A.A., Geochemical features of the deposition and stability of calcium sulfates in nature, Uch. Zap. Kazan. Univ., 2012, vol. 154, no. 4, pp. 1–6.

    Google Scholar 

  5. Baranov, A.N., Yanchenko, N.I., and Guseva, E.A., Investigation into emissions of aluminum plants of the Baikal region on the corrosion resistance of equipment and buildings, Izvest. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2015, no. 2, pp. 69–72.

  6. Bargagli, R., Biogeochemistry of Terrestrial Plants, Moscow: Geos, 2005.

    Google Scholar 

  7. Baunthiyal, M. and Ranghar, S., Physiological and biochemical responses of plants under fluoride stress: An overview, Fluoride, 2014, vol. 47, pp. 287–293.

    CAS  Google Scholar 

  8. Baunthiyal, M. and Sharma, V., Response of three semi-arid plant species to fluoride; consequences of chlorophyll Florescence, Int. J. Phytorem., 2014, vol. 16, pp. 397–414.

    Article  CAS  Google Scholar 

  9. Cheglakov, V.V., Improving the technology of smelting automatic aluminum alloys in order to obtain cast billets with desired structure and properties, Cand. Sci. (Tekh.) Dissertation, Krasnoyarsk, 2019.

  10. Divan Junior, A.M., Oliva, M.A., Martinez, C.A., and Cambraia, J., Effects of fluoride emissions on two tropical grasses: Chloris gayana and Panicum maximum, cv. Colonião, Ecotoxicol. Environ. Saf., 2007, vol. 67, pp. 247–253.

    Article  Google Scholar 

  11. Filimonova, L.M., Study of the geoecological features of the snow cover in the zone of influence of an aluminum plant using the method of physical and chemical modeling, Cand. Sci. (Geol.-Mineral.) Dissertation, Irkutsk, 2017.

  12. Fornasiero, R.B., Phytotoxic effects of fluorides, Plant Sci., 2001, vol. 161, pp. 979–985.

    Article  CAS  Google Scholar 

  13. Fowler, D., Skiba, U., Nemitz, E., Choubedar, F., Branford, D., Donovan, R., and Rowland, P., Measuring aerosol and heavy metal deposition on urban woodland and grass using inventories of 210Pb and metal concentrations in soil, Water, Air, Soil Pollut.: Focus, 2004, vol. 4, no. 2, pp. 483–499.

    Article  CAS  Google Scholar 

  14. Franceschi, V.R. and Schueren, A.M., Incorporation of strontium into plant calcium oxalate crystals, Protoplasma, 1986, vol. 130, pp. 199–205.

    Article  CAS  Google Scholar 

  15. Franzaring, J., Klumpp, A., and Fangmeier, A., Active biomonitoring of airborne fluoride near an HF producing factory using standardized grass cultures, Atmos. Environ., 2007, vol. 41, pp. 4828–4840.

    Article  CAS  Google Scholar 

  16. Garrec, I.P. and Chopin, S., Calcium accumulation in relation to fluoride pollution in plants, Fluoride, 1982, vol. 3, pp. 144–149.

    Google Scholar 

  17. Glazovskaya, M.A., Geokhimiya Prirodnykh i tekhnogennykh landshaftov SSSR (Geochemistry of Natural and Technogenic Landscapes of the USSR), Moscow: Vyssh. Shkola, 1988.

  18. Guderian, G., Zagryaznenie vozdushnoi sredy (Air Pollution), Moscow: Mir, 1979.

  19. Gupta, S., Banerjee, S., and Mondal, S., Phytotoxicity of fluoride in the germination of paddy (Oryza sativa) and its effect on the physiology and biochemistry of germinated seedlings, Fluoride, 2009, vol. 42, pp. 142–146.

    CAS  Google Scholar 

  20. Konarbaeva, G.A., Halogens in natural objects in the south of Western Siberia, Doctoral (Biol.) Dissertation, Novosibirsk, 2008.

  21. Kozlova, A.A., Lopatovskaya, O.G., Granina, N.I., Chipanina, E.V., Kuchmenko, E.V., and Bobrov, A.N., Fluoride contamination of gray forest soils from Irkutsk Aluminium Smelter, Izv. Irkutsk. Gos. Univ., Ser. Biol. Ekol., 2011, vol. 4, no. 1, pp. 87–94.

    Google Scholar 

  22. Kulikov, B.P. and Storozhev, Yu.I., Pylegazovye vybrosy alyu-minievykh elektrolizerov s samoobzhigayushchimisya anodami (Dust and Gas Emissions from Aluminum Electrolysers with Self-Baking Anodes), Krasnoyarsk: Sib. Federal’nyi Univ., Politekh. Inst., 2012.

  23. Kumar, K., Giri, A., Vivek, P., Kalaiyarasan, T., and Kumar, B., Effects of fluoride on respiration and photosynthesis in plants: an overview, Environ. Toxicol. Chem., 2017, vol. 2, no. 1, pp. 043–047.

  24. Levy, L. and Strauss, R., Comptes rendus hebdomadaires des seances de L’Academie des sciences, Serie D., 1973, vol. 277, pp. 181–184.

    Google Scholar 

  25. Lowenstam, H.A., Factors affecting the aragonite-calcite ratios in carbonate-secreting marine organisms, J. Geol., 1954, vol. 62, pp. 284–322.

    Article  CAS  Google Scholar 

  26. Mazen, A.M.A. and El-Enany, A., Formation of Ca oxalate crystals in leaves and calli of Hibiscus subdariffa in relation to Ca availability in growth medium, Bull. Fac. Sci. Assiut Univ., 2000, vol. 29, pp. 313–323.

    CAS  Google Scholar 

  27. Nesterova, A.A. and Nesterov, I.A., Determination of poplar leaf area and damage caused to the city during poplar pruning, Izv. Omsk. Gos. Istor.-Kraeved. Muzeya, 2002, no. 9, pp. 327–329.

  28. Panarin, V.M., Zuikova, A.A., and Ivanovskaya, E.N., Impact of emissions from aluminum smelters on the atmosphere. https://eco-oos.ru/biblio/konferencii/sovremennye-problemy-ekologii/28/.

  29. Pavlov, I.N., Study of fluorine sorption in leaves of woody plants, Khim. Rastit. Syr’ya, 1998, no. 2, pp. 37–43.

  30. Pavlov, I.N., Drevesnye rasteniya v usloviyakh tekhnogennogo zagryazneniya (Woody Plants in Conditions of Technogenic Pollution), Ulan-Ude: Buryatsk. Nauchn. Tsentr Sib. Otd. Ross. Akad. Nauk, 2005.

  31. Pavlov, I.N., Formation of fluorine technogenic anomalies in above-ground ecosystems of Siberia: biological sorption, monitoring, possibility of lowering the negative impact, Contemp. Probl. Ecol., 2014, no. 3, pp. 459–469.

  32. Prisedskii, Yu.G., Resistance of trees and shrubs to hydrogen fluoride in Donbass, Ekol.-Khoz. Probl. Donbassa, 1983, pp. 149–153.

    Google Scholar 

  33. Ram, A., Verma, P., and Gadi, B.R., Effect of fluoride and salicylic acid on seedling growth and biochemical parameters of watermelon (Citrullus lanatus), Fluoride, 2014, vol. 47, pp. 49–55.

    CAS  Google Scholar 

  34. Robie, R.A. and Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, U. S. Geol. Surv. Bull. 2131, 1995.

  35. Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, U. S. Geol. Surv. Bull. 1452, 1978.

  36. Rodrigues, A.A., Vasconcelos, F.S.C., Mendes, G.C., Rehn, L.S., Rodrigues, D.A., Rodrigues, C.L., and Müller, C., Fluoride in simulated rain affects the morphoanatomy and physiology of Eugenia dysenterica (Mart.) DC, Ecol. Ind., 2017, vol. 82, pp. 189–195.

    Article  CAS  Google Scholar 

  37. Rodrigues, D.A., Filho, S.C.V., Rodrigues, A.A., Müller, C., Farnese, F.S.F., Costa, A.C., Teles, E.M.G., and Rodrigues, C.L., Byrsonima basiloba as a bioindicator of simulated air pollutants: Morphoanatomical and physiological changes in response to potassium fluoride, Ecol. Ind., 2018a, vol. 89, pp. 301–308.

    Article  CAS  Google Scholar 

  38. Rodrigues, A.A., Filho, V.S.C., Müller, C., Rodrigues, D.A., Mendes, G.C., Rehn, L.S., Costa, A.C., Vital, R.G., and Sales, J.F., Sapindus saponaria bioindicator potential concerning potassium fluoride exposure by simulated rainfall: anatomical and physiological traits, Ecol. Indic., 2018b, vol. 89, pp. 552–558.

    Article  CAS  Google Scholar 

  39. Runova, E.M., Anoshkina, L.V., and Averina, G.A., Fluoride compounds effect on the vegetation growing within city limits, Syst. Methods Technol., 2012, vol. 14, no. 2, pp. 126–129.

    Google Scholar 

  40. Semendyaeva, N.V. and Zheronkina, L.A., Influence of fluorine and phosphorus on the yield and chemical composition of oats cultivated on solonetzes, Agrokhimiya, 1988, no. 4, pp. 57–63.

  41. Smit, U.Kh., Absorption of pollutants by plants, Zagryaznenie vozdukha i zhizn' rastenii (Air Pollution and Plant Life), Leningrad: Gidrometeoizdat, 1988, pp. 461–499.

    Google Scholar 

  42. Sukhareva, T.A., Elemental composition of leaves of woody plants under conditions of technogenic pollution, Khim. Interesakh Ustoich. Razvit., 2012, no. 20, pp. 369–376.

  43. Tandelov, Yu.P., Ftor v sisteme pochva–rastenie (Fluorine in the Soil-Plant System), Krasnoyarsk: Ross. Akad. S-kh. Nauk, 2012.

  44. Van Balen, E., Van de Geyn, S.C., and Desmet, G.M., Autoradiographic evidence for the incorporation of cadmium into calcium oxalate crystals, Z. Pflanzenphysiol., 1980, vol. 97, pp. 127–133.

    Article  Google Scholar 

  45. Yadu, B., Chandrakar, V., and Keshavkant, S., Responses of plants to fluoride: An overview of oxidative stress and defense mechanisms, Fluoride, 2016, vol. 49, pp. 293–302.

    CAS  Google Scholar 

  46. Yanchenko, N.I., Management of environmental safety of industrial production based on the study of the distribution of emission components in atmospheric fallout, Doctoral (Tekh.) Dissertation, Irkutsk, 2012.

  47. Yanchenko, N.I., Makukhin, V.L., and Baranov, A.N., Experimental studies and numerical modeling of the processes of fluorine distribution in the region of Bratsk, Opt. Atmos. Okeana, 2008, no. 21, pp. 841–843.

  48. Yanchenko, N.I., Baranov, A.N., and Yaskina, O.L., Distribution of aluminium production emissions’ components in atmosphere and atmospheric precipitations of Baikal industrial zone, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2014, no. 3, pp. 56–60.

  49. Yusupov, D.V., Rikhvanov, L.,P., Sudyko A.F., Baranovskaya, N.V., and Dorokhova, L.A., Radioactive elements (thorium, uranium) in the poplar leaves on urban areas and their indicator role, Razved. Okhr. Nedr., 2019, no. 2, pp. 61–68.

  50. Zyrin, N.G. and Malakhov, S.G., Metodicheskie rekomendatsii po provedeniyu polevykh i laboratornykh issledovanii pochv i rastenii pri kontrole zagryazneniya okruzhayushchei sredy metallami (Methodological Recommendations for Field and Laboratory Soil Studies in Metal Pollution Control), Moscow: Mosk. Otd. Gidrometeoizdata, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Dorokhova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorokhova, L.A., Pavlova, L.M., Yusupov, D.V. et al. Peculiarities of the Response of the Balsamic Poplar Assimilation Apparatus to the Aerotechnogenic Impact of Aluminum Production Emissions. Contemp. Probl. Ecol. 16, 76–87 (2023). https://doi.org/10.1134/S1995425523010031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425523010031

Keywords:

Navigation