Skip to main content
Log in

Long-Term Variations of δ13С in Tree Ring Cellulose of the Ob-Tom Interfluve

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract—

An analysis of δ13С long-term changes in the cellulose of annual tree rings has been performed in two forest areas of the Ob-Tom interfluve. The expected decrease in δ13С values is found in the first section, but at a rate higher than the global one by 0.16–0.2‰/10 years. At the second site, located 20 m from the peatland, there was a gradual increase in the values of δ13С until 1978, then a decrease occurred at the same rate as in the first site (0.2‰/10 years). We believe that changes in δ13С of tree cellulose in the second site reflect the dynamics of δ13С CO2 values in the peatland. The reason for the changes in dynamics after 1978 is probably the influence of the Tomsk underground water intake, which led to the drying of the peatland and, accordingly, a decrease in the value of δ13С in CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Borella, S. and Leuenberger, M., Reducing uncertainties in δ13C analysis of tree rings: pooling, milling, and cellulose extraction, J. Geophys. Res.: Atmos., 1998, vol. 103, no. 16, pp. 19519–19526.

    Article  Google Scholar 

  2. Bulygina, O.N., Razuvaev, V.N., Trofimenko, L.T., and Shvets, N.V., RF Inventor’s Certificate no. 2014621485, 2014. http://meteo.ru/data/156-temperature#oпиcaниe-мaccивa-дaнныx. Cited September 3, 2020.

  3. Bulygina, O.N., Razuvaev, V.N., Korshunova, N.N., and Shvets, N.V., RF Inventor’s Certificate no. 2015620394, 2015. http://meteo.ru/data/158-total-precipitation. Cited September 3, 2020.

  4. Cook, E.R., Berifa, K.R., Shiyatov, S.G., and Mazepa, V.S., Tree-ring standardization and growthtrend estimation, in Methods of Dendrochronology: Applications in the Environmental Sciences, Cook, E.R. and Kairiukstis, L.A., Eds., Dordrecht: Kluwer, 1990, pp. 104–123.

    Book  Google Scholar 

  5. Corbett, J.E., Tfaily, M.M., Burdige, D.J., Cooper, W.T., Glaser, P.H., and Chanton, J.P., Partitioning pathways of CO2 production in peatlands with stable carbon isotopes, Biogeochemistry, 2012, vol. 114, pp. 327–340.

    Article  Google Scholar 

  6. Dyukarev, A.G. and Pologova, N.N., Water regime of soils in the Tomsk water intake area, Vestn. Tomsk. Gos. Univ., 2009, no. 324, pp. 363–371.

  7. Dyukarev, A.G. and Pologova, N.N., State of natural environment in the Tomsk water intake area, Contemp. Probl. Ecol., 2011a, vol. 4, no. 1, pp. 91–99.

    Article  Google Scholar 

  8. Dyukarev, A.G. and Pologova, N.N., Soils of the Ob–Tomsk interfluve, Vestn. Tomsk. Gos. Univ., Biol., 2011b, vol. 15, no. 3, pp. 16–37.

    Google Scholar 

  9. Farquhar, G.D., Ehleringer, J.R., and Hubick, K.T., Carbon isotope discrimination and photosynthesis, Annu. Rev. Plant Physiol. Mol. Biol., 1989, vol. 40, pp. 503–537.

    Article  CAS  Google Scholar 

  10. Francey, R.J., Allison, C.E., Etheridge, D.M., Trudinger, C.M., Enting, I.G., Leuenberger, M., Langenfelds, R.L., Michel, E., and Steele, L.P., A 1000-year high precision record of δ13C in atmospheric CO2, Tellus B, 1999, vol. 51, pp. 170–193.

    Article  Google Scholar 

  11. Holmes R.L., Program COFECHA: Version 3, Tucson: Laboratory of Tree-Ring Research, Univ. Arizona, 1992.

    Google Scholar 

  12. Ivanov, K.E., Vodoobmen v bolotnykh landshaftakh (Water Exchange in Wetland Landscapes), Leningrad: Gidrometeoizdat, 1975.

  13. Keeling, R.F., Graven, H.D., Welp, L.R., Resplandy, L., Bi, J., Piper, S.C., Sun, Y., Bollenbacher, A., and Meijer, H.A.J., Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 39, pp. 10361–10366. https://www.pnas.org/ cgi/doi/10.1073/pnas.1619240114.

    Article  CAS  Google Scholar 

  14. Khromykh, V.V., Nature and landscapes of the south of the Ob–Tomsk interfluve, Vopr. Geogr. Sib., 1997, no. 22, pp. 198–211.

  15. Kuznetsova, V.N., Davletshin, S.G., and Shvets, N.V., RF Inventor’s Certificate no. 2013621537, 2019. http:// m-eteo.ru/data/790-srednemesyachnaya-otnositelnaya-vlazhnost-vozdukha#oпиcaниe-мaccивa-дaнныx. Cited September 4, 2020.

  16. Markelova, A.N., Nikolaeva, S.A., and Tartakovskii, V.A., Co-filtering of the tree-ring series Pinus sylvestris L. from sites with optimal growth conditions, Zh. Sib. Fed. Univ., Biol., 2012, vol. 5, no. 1, pp. 13–26.

    Google Scholar 

  17. Markelova, A.N., Simonova, G.V., Kalashnikova, D.A., Volkov, Yu.V., and Melkov, V.N., Isotopic dendrochronoindication of anthropogenic processes in the south taiga subzone of the West Siberian Plain, Materialy Trinadtsatogo Sibirskogo soveshchaniya i shkoly molodykh uchenykh po klimato-ekologicheskomu monitoringu, Tezisy dokladov (Proc. Thirteenth Siberian Conf. and School of Young Scientists on Climate and Environmental Monitoring, Abstracts of Papers), Kabanov, M.V., Ed., Tomsk: Agraf-Press, 2019, pp. 207–208.

  18. McCarrol, D. and Loader, N.J., Stable isotopes in tree rings, Quat. Sci. Rev., 2004, vol. 23, pp. 771–801.

    Article  Google Scholar 

  19. McCarrol, D., Gagen, M.H., Loader, N.J., Robertson, I., Anchukaitis, K.J., Los, S., Young, G.H.F., Jalkanen, R., Kirchhefer, A., and Waterhouse, J.S., Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 1539–1547.

    Article  Google Scholar 

  20. Nikolaeva, S.A. and Savchuk, D.A., An integrated approach and method for reconstruction of the growth and development of trees and forest communities, Vestn. Tomsk. Gos. Univ., Biol., 2009, vol. 6, no. 2, pp. 111–125.

    Google Scholar 

  21. Obolenskaya, A.V., El’nitskaya Z.P., and Leonovich, A.A., Laboratornye raboty po khimii drevesiny i tsellyulozy: Uchebnoe posobie dlya vuzov (Laboratory Manual on the Chemistry of Wood and Cellulose), Moscow: Ekologiya, 1991.

  22. Popov, V.K., Korobkin, V.A., Rogov, G.M., Lukashevich, L.D., Galyamov, Yu.Yu., Yurgin, B.I., and Zolotarev, V.V., Formirovanie i ekspluatatsiya podzemnykh vod Ob’-Tomskogo mezhdurech’ya (Development and Use of Groundwater in the Ob–Tomsk Interfluve), Tomsk: Tomsk. Gos. Arkhit.-Stroit. Univ., 2002.

  23. Rinn, A., TSAP. Reference Manual, Version 3.0, Heidelberg, 1996.

  24. Rivkina, E.M., Kraev, G.N., Krivushin, K.S., Laurinavichus, K.S., Fedorov-Davydov, D.G., Kholodov, A.L., Shcherbakova, V.A., and Galichinskii, D.A., Methane in permafrost deposits of the northeastern sector of the Arctic, Kriosfera Zemli, 2006, vol. 10, no. 3, pp. 23–41.

    Google Scholar 

  25. Robertson, A., Overpeck, J., Rind, D., Mosley-Thompson, E., Zielinski, G., Lean, J., Koch, D., Penner, J., Tegen, I., and Healy, R., Hypothesized climate forcing time series for the last 500 years, J. Geophys. Res.: Atmos., 2001, vol. 106, pp. 14783–14803.

    Article  Google Scholar 

  26. Savard, M.M., Begon, C., Parent, M., Smirnoff, A., and Marion, J., Effects of smelter sulfur dioxide emissions: a spatiotemporal perspective using carbon isotopes in tree rings, J. Environ. Qual., 2004, vol. 33, pp. 13–26.

    CAS  PubMed  Google Scholar 

  27. Shmakov, A.V., Hydrogeochemical regime of wetlands in the subtaiga zone of Western Siberia (by the example of the Timiryazevskoe swamp near Tomsk city), Extended Abstract of Cand. Sci. (Geol.-Miner.) Dissertation, Tomsk, 2016.

  28. Sostoyanie geologicheskoi sredy (nedr) territorii Sibirskogo federal’nogo okruga v 2017 g. Informatsionnyi byulleten’ (The State of the Geological Environment (Bowels) of Siberian Federal District in 2017: Newsletter), L’gotin, V.A., Ed., Tomsk: D-Print, 2018.

  29. The state of greenhouse gases in the atmosphere based on global observations through 2005. WMO Greenhouse Gas Bull., 2006, no. 2. https://library.wmo.int/doc_ num.php? explnum_id=7252.

  30. The state of greenhouse gases in the atmosphere based on global observations through 2006. WMO Greenhouse Gas Bull., 2007, no. 3. https://library.wmo.int/doc_ num.php?explnum_id=7256.

  31. The state of greenhouse gases in the atmosphere based on global observations through 2007. WMO Greenhouse Gas Bull., 2008, no. 4. https://library.wmo.int/doc_ num.php?explnum_id=7259.

  32. The state of greenhouse gases in the atmosphere based on global observations through 2008. WMO Greenhouse Gas Bull., 2009, no. 5. https://library.wmo.int/doc_ num.php?explnum_id=7264.

  33. The state of greenhouse gases in the atmosphere based on global observations through 2009. WMO Greenhouse Gas Bull., 2010, no. 6. https://library.wmo.int/doc_ num.php?explnum_id=7270.

  34. The state of greenhouse gases in the atmosphere based on global observations through 2010. WMO Greenhouse Gas Bull., 2011, no. 7. https://library.wmo.int/doc_ num.php?explnum_id=7276.

  35. The state of greenhouse gases in the atmosphere based on global observations through 2011. WMO Greenhouse Gas Bull., 2012, no. 8. https://library.wmo.int/doc_ num.php?explnum_id=7282.

  36. The state of greenhouse gases in the atmosphere based on global observations through 2012, WMO Greenhouse Gas Bull., 2013, no. 9. https://library.wmo.int/doc_ num.php?explnum_id=7288.

  37. The state of greenhouse gases in the atmosphere based on global observations through 2013. WMO Greenhouse Gas Bull., 2014, no. 10. https://library.wmo.int/doc_ num.php?explnum_id=7236.

  38. The state of greenhouse gases in the atmosphere based on global observations through 2014. WMO Greenhouse Gas Bull., 2015, no. 11. https://library.wmo.int/doc_ num.php?explnum_id=7243.

  39. The state of greenhouse gases in the atmosphere based on global observations through 2015. WMO Greenhouse Gas Bull., 2016, no. 12. https://library.wmo.int/doc_ num.php?explnum_id=3084.

  40. The state of greenhouse gases in the atmosphere based on global observations through 2016. WMO Greenhouse Gas Bull., 2017, no. 13. https://library.wmo.int/doc_ num.php?explnum_id=4022.

  41. Vaganov, E.A., Shiyatov, S.G., and Mazepa, V.S., Dendroklimaticheskie issledovaniya v Uralo-Sibirskoi Subarktike (Dendroclimatic Studies in the Ural-Siberian Subarctic), Novosibirsk: Nauka, 1996.

  42. Witicar, M.J., Faber, E., and Schoel, M., Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation–isotope evidence, Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 693–709.

    Article  Google Scholar 

  43. Zemtsov, A.A., Bolota Zapadnoi Sibiri—ikh rol’ v biosfere (The Role of Wetlands of Western Siberia in Biosphere), Tomsk: Tomsk. Gos. Univ., 2000.

  44. Zhu, X., Di, D., Ma, M., and Shi, W., Stable isotopes in greenhouses gases from soil: a review of theory and application, Atmosphere, 2019, vol. 10, no. 7, p. 377 https://doi.org/10.3390/atmos10070377

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out as part of the financing of the state budget topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Markelova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any research involving humans or animals as research objects.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markelova, A.N., Simonova, G.V., Kalashnikova, D.A. et al. Long-Term Variations of δ13С in Tree Ring Cellulose of the Ob-Tom Interfluve. Contemp. Probl. Ecol. 15, 253–261 (2022). https://doi.org/10.1134/S1995425522030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425522030088

Keywords:

Navigation