Skip to main content
Log in

Changes in Size-Morphological Structure of Bacterioplankton in Freshwater Environments of Svalbard

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The abundance, biomass, and size-morphological structure of heterotrophic bacterioplankton have been determined in freshwater environments of the Svalbard archipelago (Norway) differing in morphometry and trophic level. The quantitative parameters of bacterioplankton vary within wide limits and increase along the trophic gradient of the waters. Medium-sized cocci and coccobacilli reach up to one-third of the total abundance and half of the total biomass of bacterioplankton. The abundance and biomass of small cocci vary over a wide range, while small rods are, on the contrary, relatively stable in these parameters. With an increase in trophic status, the proportion of small cocci in the community increases, while the proportion of rods and vibrios decreases. The proportion of medium-sized cocci and coccobacilli change less, although there is a tendency for its increase in the trophic gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ameryk, A., Jankowska, K.M., Kalinowska, A., and Weslawski, J.M., Comparison of bacterial production in the water column between two Arctic fjords, Hornsund and Kongsfjorden (West Spitsbergen), Oceanologia, 2017, vol. 59, no. 4, pp. 496–507.

    Article  Google Scholar 

  2. Anesio, A., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter, M., and Psenner, R., Carbon fluxes through bacterial communities on glacier surfaces, Ann. Glaciol., 2010, vol. 51, no. 56, pp. 32–40.

    Article  CAS  Google Scholar 

  3. Batani, G., Perez, G., Martinez de la Escalera, G., Piccini, C., and Fazi, S., Competition and protist predation are important regulators of riverine bacterial community composition and size distribution, J. Freshwater Ecol., 2016, vol. 31, no. 4, pp. 609–623.

    Article  CAS  Google Scholar 

  4. Boetius, A., Anesio, A.M., Deming, J.W., Mikucki, J.A., and Rapp, J.Z., Microbial ecology of the cryosphere: sea ice and glacial habitats, Nat. Rev. Microbiol., 2015, vol. 13, pp. 677–690.

    Article  CAS  Google Scholar 

  5. Chow, C.-E.T., Kim, D.Y., Sachdeva, R., Caron, D.A., and Fuhrman, J.A., Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists, ISME J., 2014, vol. 8, pp. 816–829.

    Article  CAS  Google Scholar 

  6. Currie, D.J., Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus, Limnol. Oceanogr., 1990, vol. 35, pp. 1437–455.

    Article  Google Scholar 

  7. Galvez-Cloutier, R. and Sanchez, M., Trophic status evaluation for 154 lakes in Quebec, Canada: monitoring and recommendations, Water Qual. Res. J. Can., 2007, vol. 42, no. 4, pp. 252–268.

    Article  CAS  Google Scholar 

  8. Gasol, J.M., del Giorgio, P.A., Massana, R., and Duarte, C.M., Active versus inactive bacteria: size-dependence in a coastal marine plankton community, Mar. Ecol.: Prog. Ser., 1995, vol. 128, pp. 91–97.

    Article  Google Scholar 

  9. Górniak, D., Marszałek, H., Jankowska, K., and Dunalska, J., Bacterial community succession in an Arctic lake–stream system (Brattegg Valley, SW Spitsbergen), Boreal Environ. Res., 2016, vol. 21, pp. 115–133.

    Google Scholar 

  10. Grond, K., Lanctot, R.B., Jumpponen, A., and Sandercock, B.K., Recruitment and establishment of the gut microbiome in arctic shorebirds, FEMS Microbiol. Ecol., 2017, vol. 93, no. 12. P.

  11. Hanssen-Bauer, I., Førland, E.J., Hisdal, H., Mayer, S., Sandø, A.B., and Sorteberg, A., Climate in Svalbard 2100—A Knowledge Base for Climate Adaptation, Oslo: Norwegian Centre of Climate Services (NCCS), 2019.

  12. Jensen, T.C., Walseng, B., Hessen, D.O., Dimante-Deimantovica, I., Novichkova, A.A., Chertoprud, E.S., Chertoprud, M.V., Sakharova, E.G., Krylov, A.V., Frisch, D., and Christoffersen, K.S., Changes in trophic state and aquatic communities in high Arctic ponds in response to increasing goose populations, Freshwater Biol., 2019, vol. 64, no. 7, pp. 1241–1254.

    Article  CAS  Google Scholar 

  13. Kirchman, D.L., Malmstrom, R.R., and Cottrell, M.T., Control of bacterial growth by temperature and organic matter in the Western Arctic, Deep Sea Res., Part II, 2005, vol. 52, pp. 3386–3395.

    Article  Google Scholar 

  14. Kopylov, A.I. and Kosolapov, D.B., Microbiological indicators of freshwater eutrophication, Materialy Mezhdunarodnoi konferentsii “Bioindikatsiya v monitoringe presnovodnykh ekosistem” (Proc. Int. Conf. “Bioindication in Monitoring of Freshwater Ecosystems”), St. Petersburg: Lema, 2007, pp. 176–181.

  15. Kosek, K., Luczkiewicz, A., Koziol, K., Jankowska, K., Ruman, M., and Polkowska, Z., Environmental characteristics of a tundra river system in Svalbard. Part 1: Bacterial abundance, community structure and nutrient levels, Sci. Total Environ., 2019, vol. 653, pp. 1571–1584.

    Article  CAS  Google Scholar 

  16. Krambeck, C., Krambeck, H.-J., and Overbeck, J., Microcomputer assisted biomass determination of plankton bacteria on scanning electron micrographs, Appl. Environ. Microbiol., 1981, vol. 42, no. 1, pp. 142–149.

    Article  CAS  Google Scholar 

  17. Kuznetsova, E.V., Kosolapov, D.B., and Belkova, N.L., Diversity of planktonic bacteria in Durgun and Taishir reservoirs (Western Mongolia), Microbiology (Moscow), 2020a, vol. 89, no. 5, pp. 595–602.

    Article  CAS  Google Scholar 

  18. Kuznetsova, E.V., Kosolapov, D.B., and Kosolapova, N.G., Taxonomic and size-morphological groups of bacterioplankton in two Mongolian reservoirs, Biol. Bull. (Moscow), 2020b, vol. 47, no. 1, pp. 27–34.

    Article  CAS  Google Scholar 

  19. Kuznetsova, E.V., Sukhanova, E.V., and Kosolapov, D.B., Taxonomic diversity and size-morphological structure of bacterioplankton of the Rybinsk reservoir, Microbiology (Moscow), 2021, vol. 90, no. 3, pp. 324–335.

    Article  CAS  Google Scholar 

  20. Luoto, T.P., Rantala, M.V., Kivilä, E.H., Nevalainen, L., and Ojala, A.E.K., Biogeochemical cycling and ecological thresholds in a High Arctic lake (Svalbard), Aquat. Sci., 2019, vol. 81, art. ID 34.

    Article  Google Scholar 

  21. Norland, S., The relationship between biomass and volume of bacteria, in Handbook of Methods in Aquatic Microbial Ecology, Kemp, P.F., Sherr, B.F., Sherr, E.B., and Cole, J.J., Eds., Boca Raton: CRC Press, 1993, pp. 303–308.

    Google Scholar 

  22. Pedros-Alio, C., Potvin, M., and Lovejoy, C., Diversity of planktonic microorganisms in the Arctic Ocean, Prog. Oceanogr., 2015, vol. 139, pp. 233–243.

    Article  Google Scholar 

  23. Pernthaler, J., Predation on prokaryotes in the water column and its ecological implications, Nat. Rev. Microbiol., 2005, vol. 3, pp. 537–546.

    Article  CAS  Google Scholar 

  24. Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting of aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, no. 5, pp. 943–948.

    Article  Google Scholar 

  25. Raymond, L., Kepner, J.R., and Pratt, J.R., Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present, Microbiol. Rev., 1994, vol. 58, no. 4, pp. 603-615.

    Article  Google Scholar 

  26. Sommaruga, R. and Psenner, R., Permanent presence of grazing-resistant bacteria in a hypertrophic lake, Appl. Environ. Microbiol., 1995, vol. 61, pp. 3457–3459.

    Article  CAS  Google Scholar 

  27. Schütte, U.M.E., Abdo, Z., Foster, J., Ravel, J., Bunge, J., Solheim, B., and Forney, L.J., Bacterial diversity in a glacier foreland of the high Arctic, Mol. Ecol., 2010, vol. 19, pp. 54–66.

    Article  Google Scholar 

  28. Terhaar, J., Kwiatkowski, L., and Bopp, L., Emergent constraint on Arctic Ocean acidification in the twenty-first century, Nature, 2020, vol. 582, pp. 379–383.

    Article  CAS  Google Scholar 

  29. Thelaus, J., Heacky, P., Forsman, M., and Andersson, A., Predation pressure on bacteria increases along aquatic productivity gradients, Aquat. Microb. Ecol., 2008, vol. 52, pp. 45–55.

    Article  Google Scholar 

  30. Wetzel, R.G., Limnology; Lake and River Ecosystem, New York: Academic, 2001, 3rd ed.

    Google Scholar 

  31. Winter, C., Bouvier, T., Weinbauer, M.G., and Thingstad, T.F., Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “Killing the Winner” hypothesis revisited, Microbiol. Mol. Biol. Rev., 2010, vol. 74, pp. 42–57.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank senior researcher Cand. Sci. (Biol.) E.G. Sakharova (Papanin Institute of Inland Water Biology, Russian Academy of Sciences) for collecting and preserving samples during expeditionary studies of the waters of Svalbard.

Funding

This study was performed as part of State Task no. 0122121051100102-2. Expeditionary research was carried out with financial support from the BRANTA-DULCIS project (no. 246726) and the microbiological parameters were determined with financial support from the Government of Tyumen oblast under the project of the West Siberian Interregional Scientific and Educational Center no. 89-DON (2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kuznetsova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, E.V., Kosolapov, D.B. & Krylov, A.V. Changes in Size-Morphological Structure of Bacterioplankton in Freshwater Environments of Svalbard. Contemp. Probl. Ecol. 15, 139–146 (2022). https://doi.org/10.1134/S199542552202007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542552202007X

Keywords:

Navigation