Skip to main content
Log in

Analysis of Forest Condition Based on MODIS Remote-Sensing Data

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The potential for the assessment of the tree state based on remote-sensing data has been studied. The integral indicators of seasonal dynamics of the vegetation-index (NDVI) were used. The values for in 2003–2017 were compared for control (unharmed) and damaged test plots in the Khamar-Daban zone near the coast of Lake Baikal (Irkutsk oblast). It is shown that the use of the proposed integral indicators of the seasonal NDVI dynamics makes it possible to classify the test plots according to the tree state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Barr, A., Black, T.A., and McCaughey, H., Climatic and phenological controls of the carbon and energy balances of three contrasting boreal forest ecosystems in western Canada, in Phenology of Ecosystem Processes: Applications in Global Change Research, New York: Springer-Verlag, 2009, pp. 3–34.

    Google Scholar 

  2. Bayarjargal, Y., Karnieli, A., Bayasgalan, M., Khudulmur, S., Gandush, C., and Tucker, C.J., A comparative study of NOAA-AVHRR derived drought indices using change vector analysis, Int. J. Remote Sens., 2006, vol. 105, no. 1, pp. 9–22.

    Google Scholar 

  3. Belov, A.V., Lyamkin, V.F., and Sokolova, L.P., Kartograficheskoe izuchenie bioty (Cartographic Study of Biota), Irkutsk: Oblmashinform, 2002.

  4. Cunha, M. and Richter, C., A time-frequency analysis on the impact of climate variability with focus on semi-natural montane grassland meadows, IEEE Trans. Geosci. Remote Sens., 2014, vol. 52, no. 10, pp. 6156–6164.

    Article  Google Scholar 

  5. de Beurs, K.M. and Henebry, G.M., Land surface phenology and temperature variation in the International Geosphere-Biosphere Program high-latitude transects, Global Change Biol., 2005, vol. 11, no. 5, pp. 779–790.

    Article  Google Scholar 

  6. Jacquin, A., Sheeren, D., and Lacombe, J.P., Vegetation cover degradation assessment in Madagascar savanna based on trend analysis of MODIS NDVI time series, Int. J. Appl. Earth Obs. Geoinf., 2010, vol. 12, pp. S3–S10.

    Article  Google Scholar 

  7. Kovalev, A.V., Voronin, V.I., and Sukhovolskiy, V.G., Assessment of damage to cedar plantations on the southern shore of Lake Baikal based on long-term MODI-S/AQUA satellite observations, Materialy VII Vserossiiskoi konferentsii “Aerokosmicheskie metody i geoinformatsionnye tekhnologii v lesovedenii, lesnom khozyaistve i ekologii,” Moskva, 22–24 aprelya 2019 g. (Proc. VII All-Russ. Conf. “Aerospace Methods and GIS Technologies in Forest Science, Forestry, and Ecology,” Moscow, April 22–24, 2019), Moscow: Tsentr Probl. Ekol. Prod. Lesov, Ross. Akad. Nauk, 2019, pp. 63–64.

  8. Krasnobaev, V.A. and Voronin, V.I., Abnormal thaws as one of the reasons of damage of the crown of young coniferous trees in the southern Baikal region, Geogr. Prir. Resur., 2011, no. 2, pp. 75–78.

  9. Liang, L., Chen, Y., Hawbaker, T., Zhu, Z., and Gong, P., Mapping mountain pine beetle mortality through growth trend analysis of time-series Landsat data, Remote Sens., 2014, vol. 6, pp. 5696–5716.

    Article  Google Scholar 

  10. Liu, Y., Hill, M.J., Zhang, X., Wang, Z., Richardson, A.D., Hufkens, K., Filippa, G., Baldocchi, D.D., Ma, S., Verfaillie, J., and Schaaf, C.B., Using data from Landsat, MODIS, VIIRS and Pheno Cams to monitor the phenology of California oak/grass savanna and open grassland across spatial scales, Agric. For. Meteorol., 2017, vols. 237–238, pp. 311–325.

    Article  Google Scholar 

  11. Ma, X., Huete, A., Yu, Q., Coupe, N.R., Davies, K., Broich, M., Ratana, P., Beringer, J., Hutley, L.B., Cleverly, J., Boulain, N., and Eamus, D., Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect, Remote Sens. Environ., 2013, vol. 139, pp. 97–115.

    Article  Google Scholar 

  12. Olsson, P.O., Lindstrom, J., and Eldundh, L., Near real-time monitoring of insect induced defoliation in subalpine birch forests with MODIS derived NDVI, Remote Sens. Environ., 2016, vol. 181, pp. 42–53.

    Article  Google Scholar 

  13. Pleshanov, A.S. and Morozova, T.I., Mikromitsety pikhty sibirskoi i atmosfernoe zagryaznenie lesov (Siberian Fir Micromycetes and Atmospheric Pollution of Forests), Novosibirsk: Geo, 2009.

  14. Rastitel’nost’ khrebta Khamar-Daban (Vegetation of the Khamar-Daban Ridge), Novosibirsk: Nauka, 1988.

  15. Rechid, D., Raddatz, T.J., and Jacob, D., Parameterization of snow-free land surface albedo as a function of vegetation phenology based on MODIS data and applied in climate modeling, Theor. Appl. Climatol., 2009, vol. 95, pp. 245–255.

    Article  Google Scholar 

  16. Richardson, A.D., Black, A.T., Ciais, P., Delbart, N., Friedl, M.A., Gobron, N., Hollinger, D.Y., Kutsch, W.L., Longdoz, B., Luyssaert, S., Migliavacca, M., Montagnani, L., Munger, W.J., Moors, E., Piao, S., et al., Influence of spring and autumn phenological transitions on forest ecosystem productivity., Philos. Trans. R. Soc., B, 2010, vol. 365, pp. 3227–3246.

  17. Senf, C., Seidl, R., and Hostert, P., Remote sensing of forest insect disturbances: current state and future directions, Int. J. Appl. Earth Obs. Geoinf., 2017, vol. 60, pp. 49–60.

    Article  Google Scholar 

  18. Shcherbin-Parfenenko, A.L., Bakterial’nye zabolevaniya lesnykh porod (Bacterial Diseases of Forest Species), Moscow: Goslesbumizdat, 1963.

  19. Spruce, J.P., Sader, S., Ryan, R.E., Smoot, J., Kuper, P., Ross, K., Prados, D., Russell, J., Gasser, G., and McKellip, R., Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks, Remote Sens. Environ., 2011, vol. 115, pp. 427–437.

    Article  Google Scholar 

  20. Sukhovolskiy, V.G., Ivanova, Yu.D., Ovchinnikova, T.M., and Botvich, I.Yu., Modeling of the phenodynamics of deciduous tree species, Lesovedenie, 2017, no. 4, pp. 293–302.

  21. Thayn, J.B., Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA, Remote Sens. Environ., 2013, vol. 136, pp. 210–217.

    Article  Google Scholar 

  22. Tottrup, C. and Rasmussen, M.S., Mapping long-term changes in savannah crop productivity in Senegal through trend analysis of time series of remote sensing data, Agric., Ecosyst. Environ., 2004, vol. 103, no. 3, pp. 545–560.

    Article  Google Scholar 

  23. Tucker, C.J., Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 1979, vol. 8, pp. 127–150.

    Article  Google Scholar 

  24. Verbesselt, J., Robinson, A., Stone, C., and Culvenor, D., Forecasting tree mortality using change metrics derived from MODIS satellite data, For. Ecol. Manage., 2009, vol. 258, no. 7, pp. 1166–1173.

    Article  Google Scholar 

  25. Verbesselt, J., Zeileis, A., and Herold, M., Near real-time disturbance detection using satellite image time series, Remote Sens. Environ., 2012, vol. 123, pp. 98–108.

    Article  Google Scholar 

  26. Voronin, V.I., Bacterial dropsy of conifers in the Baikal forests: reasons and risk of epiphytotics, Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem i shkoly molodykh uchenykh “Mekhanizmy ustoichivosti rastenii i mikroorganizmov k neblagopriyatnym usloviyam sredy” (Proc. All-Russ. Sci. Conf. with Int. Participation and School of Yong Scientists “Mechanisms of Tolerance of Plants and Microorganisms to Unfavorable Environmental Conditions”), Irkutsk: Inst. Geogr. im. V.B. Sochavy, Sib. Otd., Ross. Akad. Nauk, 2018, pp. 9–12.

  27. Voronin, V.I. and Sokov, M.K., Influence of organosulfur components of atmospheric emissions on Siberian fir, Lesovedenie, 2005, no. 2, pp. 62–64.

  28. Voronin, V.I., Morozova, T.I., Stavnikov, D.Yu., Nechesov, I.A., Oskolkov, V.A., Buyantuev, V.A., Mikhailov, Yu.Z., Govorin, Ya.V., Seredkin, A.D., and Shuvarkov, M.A., Bacterial damage of the cedar forests of the Baikal region, Lesn. Khoz., 2013, no. 3, pp. 39–41.

Download references

Funding

The research was carried out with the financial support of the Russian Foundation for Basic Research (17-05-41012 RGO_a and 17-29-05074 ofi_m).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Kovalev, V. I. Voronin, V. A. Oskolkov or V. G. Sukhovolskiy.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, A.V., Voronin, V.I., Oskolkov, V.A. et al. Analysis of Forest Condition Based on MODIS Remote-Sensing Data. Contemp. Probl. Ecol. 14, 717–722 (2021). https://doi.org/10.1134/S199542552107009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542552107009X

Keywords:

Navigation