Skip to main content
Log in

Polyvariance of Ontogeny of Alluvial and Nonalluvial Species of Salix L. (Salicaceae) of the Boreal Zone of Eurasia

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract—

This paper presents a review of the ontogeny of 11 lifeforms using the example of 16 boreal species of Salix relating to two ecological groups (alluvial and nonalluvial). At the intraspecific level, among the studied species, the greatest diversity of lifeforms is detected in alluvial species, while the lowest is in nonalluvial species. A polyvariance of development is detected in the studied species: structural and dynamic. As part of structural polyvariance, morphological (as a result of which two and more (up to four) lifeforms are formed in the adult state) and dimensional (expressed in a change in the size and life state of an individual within the same ontogenetic state) were distinguished. The dynamic polyvariance is associated with a different duration of pre-generative and generative periods of ontogeny. A prevalence of the generative period of ontogeny over the pregenerative is observed in all alluvial and most nonalluvial species. In individuals of two lifeforms of nonalluvial species, the pregenerative period prevails during ontogeny. Alluvial species master a narrower range of environmental conditions as compared with nonalluvial ones. At the intraspecific level, among the studied species, the greatest diversity of lifeforms is detected in alluvial species (two to four lifeforms in each species), while the lowest is in nonalluvial species (one to three lifeforms in each species). Alluvial species are characterized by the presence of a small number of long shoots, a large number of shoots of average length, and a smaller number of short ones, which determines their greater height when compared to nonalluvial species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Afonin, A.A., Variability of willows in the Bryansk forest area and the prospects for their selection for resistance and productivity, Extended Abstract of Doctoral (Agric.) Dissertation, Bryansk, 2006.

  2. Antsiferov, G.I., Iva (Willow), Moscow: Lesn. Prom-st., 1984.

    Google Scholar 

  3. Bobrovskaya, N.E. and Bobrovskii, M.V., Model of the detailed structure of deciduous trees, in Rezul’taty fundamental’nykh issledovanii po prioritetnym nauchnym napravleniyam lesnogo kompleksa strany: nauchnye trudy MLGI (Results of Fundamental Research in Priority Scientific Areas of the National Forestry: Scientific Works of MLGI), 1991, no. 242, pp. 38–42.

  4. Cherepanov, S.K., Sosudistye rasteniya Rossii i sopredel’nykh gosudarstv (v predelakh byvshego SSSR) (Vascular Plants of Russia and Neighboring States (within the Former USSR)), St. Petersburg: Mir Sem’ya, 1996.

  5. Cheryomushkina, V.A., Talovskaya, E.B., Astashenkov, A.Yu., Guseva, A.A., and Dzhumanov, S., Biology of Thymus dmitrievae Gamajun. (Lamiaceae) in the protected area (Aksu-Dzhabagly Reserve), Vestn. Tomsk. Gos. Univ., Biol., 2019, no. 47, pp. 103–122. https://doi.org/10.17223/19988591/47/7

  6. Chistyakova, A.A., Life forms and their spectra as an indicator of the state of the species in the cenosis (on the example of broad-leaved trees), Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1988, vol. 93, no. 6, pp. 93–105.

    Google Scholar 

  7. Derviz-Sokolova, T.G., Life forms of willows of the North-East of the USSR, Bot. Zh., 1982, vol. 67, no. 7, pp. 975–982.

    Google Scholar 

  8. Didenko, E.G. and Evstigneev, O.I., Features of ontogeny and life forms of red elderberry in the coniferous-deciduous forests of the Nerusso-Desnyansky woodland, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2002, vol. 107, no. 3, pp. 63–69.

    Google Scholar 

  9. Evstigneev, O.I. and Korotkov, V.N., Ontogenetic stages of trees: An overview, Russ. J. Ecosyst. Ecol., 2016, vol. 1, no. 2, pp. 1–31.

    Google Scholar 

  10. Frolov, P.V., Modeling of populations of dwarf shrubs in forest ecosystems and their contribution to the dynamics of carbon and nitrogen, Cand. Sci. (Biol.) Dissertation, Pushchino, 2020.

  11. Gattsuk, L.E., Gemmaxillary plants and the system of subordinate units of their shoot body, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1974, vol. 79, no. 1, pp. 100–113.

    Google Scholar 

  12. Gavrilova, M.N., Ontogenetic structure of Russian broom cenopopulations in the Republic of Mari El, Vestn. Orenb. Gos. Univ., 2009, no. 4, pp. 117–121.

  13. Getmanets, I.A., Ecological diversity and biomorphology of the genus Salix L. Southern Urals, Doctoral (Biol.) Dissertation, Omsk, 2011.

  14. Istomina, I.I. and Bogomolova, N.N., Polyvariance of ontogenesis and life forms of forest shrubs, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1991, vol. 96, no. 4, pp. 68–78.

    Google Scholar 

  15. Mazurenko, M.T., Ontogeny of Kamchatka honeysuckle in deep shading conditions, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1978, no. 1, pp. 99–105.

  16. Mazurenko, M.T., Rododendrony Dal’nego Vostoka, struktura i morfogenez (Rhododendrons of the Far East: Structure and Morphogenesis), Moscow: Nauka, 1980.

  17. Mazurenko, M.T., Biomorfologicheskie adaptatsii rastenii Krainego Severa (Biomorphological Adaptations of Plants of the Far North), Moscow, 1986.

    Google Scholar 

  18. Mazurenko, M.T., Fluviates—a new ecological group of plants, Biol. Vnutr. Vod, 2001, no. 2, pp. 36–42.

  19. Mazurenko, M.T., The main directions of evolutionary rearrangements of biomorphs in the genus Salix (Salicaceae L.), Byull. Bot. Sada-Inst. Dal’nevost. Otd. Ross. Akad. Nauk, 2010, no. 7, pp. 4–22.

  20. Mazurenko, M.T. and Khokhryakov, A.P., On the biological and morphological characteristics of dwarf shrubs in the taiga zone of eastern Siberia, in Biologiya i produktivnost’ rastitel’nogo pokrova Severo-Vostoka (Biology and Productivity of the Vegetation Cover of the North-East), Vladivostok, 1976, pp. 3–48.

    Google Scholar 

  21. Nedoseko, O.I., Boreal’nye vidy iv podrodov Salix i Vetrix: Ontomorfogenez i zhiznennye formy: Monografiya (Boreal Species of Willows of the Subgenera Salix and Vetrix: Ontomorphogenesis and Life Forms: Monograph), Nizhny Novgorod: Nizhegor. Gos. Univ., 2014.

  22. Nedoseko, O.I., Klassifikatsiya pobegov i pobegovykh sistem boreal’nykh vidov iv podrodov Salix i Vetrix: Monografiya (Classification of Shoots and Shoot Systems of Boreal Species of Willows of the Subgenera Salix and Vetrix: Monograph), Arzamas: Arzamasskii Fil., Nizhegorod. Gos. Univ., 2015.

  23. Nedoseko, O.I., Formation of life forms and crown architectonics of boreal willow species of the subgenera Salix and Vetrix Dumort in ontogenesis, Extended Abstract of Doctoral (Agric.) Dissertation, Moscow, 2018.

  24. Nedoseko, O.I., Effects of illumination and gender differences on the architecture of the boreal species of Salix L., Contemp. Probl. Ecol., 2020, vol. 13, no. 3, pp. 285–299.

    Article  Google Scholar 

  25. Nedoseko, O.I. and Viktorov, V.P., Life forms of species of the genus Salix L. Russia, Russ. J. Ecosyst. Ecol., 2018, vol. 3, no. 2. https://doi.org/10.21685/2500-0578-2018-2-5

  26. Polivariantnost’ razvitiya organizmov, populyatsii i soobshchestv: Nauchnoe izdanie (Polyvariant Development of Organisms, Populations, and Communities: Scientific Publication), Voskresenskaya, O.L., Eds., Ioshkar-Ola, 2006.

    Google Scholar 

  27. Rabotnov, T.A., Life cycle of perennial herbaceous plants in meadow cenoses, Tr. Bot. Inst. Akad. Nauk SSSR im. V.L. Komarova, Ser. 3 Geobot., 1950, no. 6, pp. 7–204.

  28. Revyakina, M.P., Biomorphology and coenotic role of the tree caragana (Caragana arborescens Lam.) on the Salair Ridge, Cand. Sci. (Biol.) Dissertation, Novosibirsk, 1988.

  29. Sagalakova, L.S. and Bardonova, L.K., Ontogeny of Hippophae rhamnoides, Vestn. Buryat. Gos. Univ., 2011, no. 4, pp. 88–92.

  30. Serebryakov, I.G., Ekologicheskaya morfologiya rastenii (Ecological Morphology of Plants), Moscow: Vysshaya Shkola, 1962.

  31. Shirokov, A.I., Features of the organization of synusia of shrubs in undisturbed fir-spruce linden forests of the Nizhny Novgorod Trans-Volga region, Vestn. Nizhegor. Univ. im. N.I. Lobachevskogo, Ser.: Biol., 1999, no. 1, pp. 15–20.

  32. Skvortsov, A.K., Ivy SSSR (sistematicheskii i geograficheskii obzor) (Willows of the USSR (Systematic and Geographical Review)), Moscow: Nauka, 1968.

  33. Skvortsov, A.K., Willows of Russia and Adjacent Countries. Taxonomical and Geographical Revision, Joensuu: Univ. of Joensuu, 1999.

    Google Scholar 

  34. Smirnova, O.V., Chistyakova, A.A., Zaugolnova, L.B., Evstigneev, O.I., Popadiouk, R.V., and Romanovskii, A.M., Ontogeny of a tree, Bot. Zh., 1999, vol. 84, no. 12, pp. 8–19.

    Google Scholar 

  35. Talovskaya, E.B., Cheryomushkina, V.A., and Barsukova, I.N., Architecture of the dwarf shrub Thymus petraeus (Lamiaceae) in the conditions of Southern Siberia, Contemp. Probl. Ecol., 2020, vol. 13, no. 1, pp. 85–94. https://doi.org/10.1134/S1995425520010102

    Article  Google Scholar 

  36. Uranov, A.A., Age spectrum of phytocenopopulations as a function of time and energy wave processes, Biol. Nauki, 1975, no. 2, pp. 7–34.

  37. Vorontsova, L.I., Gattsuk, L.E., and Chistyakova, A.A., Identification of three levels of life state in the ontogeny of individuals and the use of this method for characterizing cenopopulations, in Podkhody k izucheniyu tsenopopulyatsii i konsortsii (Approaches to the Study of Cenopopulations and Consortia), Moscow: Mosk. Gos. Pedagog. Inst. im. V.I. Lenina, 1987, pp. 7–24.

  38. Zaugol’nova, L.B., Age stages in the ontogeny of European ash Fraxinus escelsior L., in Voprosy morfogeneza tsvetkovykh rastenii i stroenie ikh tsenopopulyatsii (Problems of the Morphogenesis of Flowering Plants and the Structure of Their Cenopopulation), Moscow: Nauka, 1968, pp. 81–102.

  39. Zaugol’nova, L.B., Zhukova, L.A., Komarov, A.S., and Smirnova, O.V., Tsenopopulyatsii rastenii (ocherki populyatsionnoi biologii) (Plant Cenopopulations (Essays on Population Biology)), Moscow: Nauka, 1988.

  40. Zhilenko, V.Yu. and Sorokopudov, V.N., Some features of ontogenesis of Berberis vulgaris L. in the conditions of the Belgorod region, Nauka Sovrem., 2014, no. 33, pp. 19–23.

  41. Zhukova, L.A., Populyatsionnaya zhizn’ lugovykh rastenii (Population Life of Meadow Plants), Ioshkar-Ola: Lanar, 1995.

  42. Zhukova, L.A., Diversity of pathways of ontogenesis in plant populations, Ekologiya, 2001, no. 3, pp. 169–176.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Nedoseko.

Ethics declarations

Conflict of interests. The author declares that she has no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedoseko, O.I. Polyvariance of Ontogeny of Alluvial and Nonalluvial Species of Salix L. (Salicaceae) of the Boreal Zone of Eurasia. Contemp. Probl. Ecol. 14, 408–420 (2021). https://doi.org/10.1134/S1995425521050073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425521050073

Keywords: