Skip to main content
Log in

Spatial Assessment of the Climatic Niche of Daurian Pika

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

One basic task of environmental activities under the conditions of rapid climate changes is to determine the degree of species vulnerability to a certain vector of climate changes. Using Maxent 3.4.1 software, this study has modeled the climatic niche of Daurian pika based on 273 points of its contemporary habitat and attempted to determine the pattern of changes in the spatial location of this niche under extreme scenarios of climate development in 2070. It is shown that the best models in terms of statistical validation unsatisfactorily predict the range of the species niche in areas that were not used during the construction of the model and can serve as a climate surrogate at other time periods. A model for the future projection was selected so that it could provide the statistically best projections of the niche range in other areas. The largest contribution to the model construction was made by two variables: annual mean temperature and coefficient of precipitation variation. The constructed model was validated by the direct check of its projections in two ways. (1) A check for the presence of pika in three previously unexplored localities, where the climatic conditions are suitable for the habitation of Daurian pika according to the model, recorded the species only in one locality. It was then found that other abiotic factors in the other two localities proved to be inconsistent with the requirements of the species. (2) A comparison of the projections of the range to the time periods of 140 000–120 000, 21 000, and 6000 years ago with the fossils of the species in the respective periods shows that all currently known localities are within the ranges projected by the model. The expected climate changes do not lead to critical changes in the spread of living conditions for Ochotona dauurica; however, they may lead to noticeable changes in their area pattern, which is particularly pronounced under the RCP 8.5 development scenario (which projects the highest deviation from the existing distribution, a lower suitability of their contemporary habitats, and an increase in their fragmentation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aichi biodiversity targets, 2010. http://www.cbd.int/sp.

  2. Alekseeva, N.V., Evolyutsiya prirodnoi sredy Zapadnogo Zabaikal’ya v pozdnem kainazoe (po dannym fauny melkikh mlekopitayushchikh) (Evolution of Environment of Western Transbaikalia in Late Cainozoe According to Fauna Analysis of Small Mammals), Moscow: GEOS, 2005.

  3. Anderson, R.P., Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia: Muridae) in Venezuela, J. Biogeogr., 2003, vol. 30, pp. 591–605.

    Google Scholar 

  4. Blois, J.L., Williams, J.W., Fitzpatrick, M.C., Jackson, S.T., and Ferrier, S., Space can substitute for time in predicting climate-change effects on biodiversity, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, no. 23, pp. 9374–9379.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown, J.L., Bennett, J.R., and French, C.M., SDMtoolbox 2.0: the next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, PeerJ, 2017, vol. 5, p. e4095.

    PubMed  PubMed Central  Google Scholar 

  6. Elith, J., Kearney, M., and Phillips, S., The art of modeling range-shifting species, Methods Ecol. Evol., 2010, vol. 1, pp. 330–342.

    Google Scholar 

  7. Erbajeva, M.A., Istoriya antropogenovoi fauny zaitseobraznykh i gryzunov Selenginskogo srednegor’ya (History of Anthropogenic Fauna of Lagomorphs and Rodents of the Selenga Middle Mountains), Moscow: Nauka, 1970.

  8. Erbajeva, M.A., Pishchukhi kainozoya (Taksonomiya, sistematika, filogeniya) (Pikas of Cainozoe: Taxonomy, Systematics, and Phylogeny), Moscow: Nauka, 1988.

  9. Erbajeva, M.A. and Alexeeva, N.V., Pliocene and Pleistocene biostratigraphic succession of Transbaikalia with emphasis on small mammals, Quat. Int., 2000, vols. 68–71, pp. 67–75.

    Google Scholar 

  10. Erbajeva, M.A., Alexeeva, N.V., and Kisloschaeva, T.V., Ochotona dauurica Pallas, 1776: modern and past distribution area in Mongolia and the Transbaikal region, Erforsch. Biol. Ressour. Mongol., 2012, vol. 12, pp. 39–45.

    Google Scholar 

  11. Fuentes-Hurtado, M., Hof, A.R., and Jansson, R., Paleodistribution modeling suggests glacial refugia in Scandinavia and out-of-Tibet range expansion of the Arctic fox, Ecol. Evol., 2016, vol. 6, no. 1, pp. 170–180.

    PubMed  Google Scholar 

  12. Gent, P.R., Danabasoglu, G., Donner, L.J., Holland, M.M., Hunke, E.C., Jayne, S.R., Lawrence, D.M., Neale, R.B., Rasch, P.J., Vertenstein, M., Worley, P.H., Yang, Z.-L., and Zhang, M., The community climate system model version 4, J. Clim., 2011, vol. 24, no. 19, pp. 4973–4991.

    Google Scholar 

  13. GISS surface temperature analysis (GISTEMP), NASA Goddard Institute for Space Studies, 2018. https:// d-ata.giss.nasa.gov/gistemp. Accessed June 9, 2018.

  14. Hijmans, R., Cameron, S., Parra, J., Jonesc, P.G., and Jarvisc, A., Very high resolution interpolated climate surfaces for global land areas, J. Climatol., 2005, vol. 25, pp. 1965–1978.

    Article  Google Scholar 

  15. Johnston, A.N., Bruggeman, J.E., Beers, A.T., Beever, E.A., Christophersen, R.G., and Ransom, J.I., Ecological consequences of anomalies in atmospheric moisture and snowpack, Ecology, 2019, vol. 100, no. 4, p. e02638

    Article  Google Scholar 

  16. Khenzykhenova, F.I., Late Pleistocene small mammals from the Baikal region (Russia), Acta Zool. Cracov, 1996, vol. 39, no. 1, pp. 229–234.

    Google Scholar 

  17. Khenzykhenova, F.I., Endrikhinskii, A.S., and Dergausova, M.I., Geology and fauna of the locations Khar’yaska and Chernoyarovo, in Voprosy geologii kainozoya Pribaial’ya i Zabaikal’ya (Geology of Cainozoe in Cis-Baikal and Trans-Baikal Regions), Ulan-Ude: Buryat. Nauchn. Tsentr, 1991, pp. 103–110.

  18. Kulikov, A.I., Ubugunov, L.L., and Mangataev, A.T., Global climate change and its impact on ecosystems, Arid Ecosyst., 2014, vol. 4, no. 3, pp. 135–141.

    Article  Google Scholar 

  19. Laland, K., Matthews, B., and Feldman, M.W., An introduction to niche construction theory, Evol. Ecol., 2016, vol. 30, pp. 191–202.

    Article  Google Scholar 

  20. MacArthur, R.A. and Wang, L.C.H., Behavioral thermoregulation in the pika Ochotona princeps: a field study using radiotelemetry, Can. J. Zool., 1973, vol. 52, pp. 353–358.

    Google Scholar 

  21. McLean, B.S., Nyamsuren, B., Tchabovsky, A., and Cook, J.A., Impacts of late Quaternary environmental change on the long-tailed ground squirrel (Urocitellus undulates) in Mongolia, Zool. Res., 2018, vol. 39, no. 3, pp. 1-9.

    Google Scholar 

  22. Merow, C. and Silander, Jr., J.A., A comparison of Maxlike and Maxent for modeling species distributions, Methods Ecol. Evol., 2014, vol. 5, pp. 215–225.

    Google Scholar 

  23. Merow, C., Smith, M.J., and Silander, Jr., J.A., A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter, Ecography, 2013, vol. 36, pp. 1058–1069.

    Google Scholar 

  24. Morales, N.S., Fernández, I.C., and Baca-González, V., Maxent’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review, PeerJ, 2017, vol. 5, p. e3093.

    PubMed  PubMed Central  Google Scholar 

  25. Nikol’skii, A.A., Duha, J., and Sukhbat, E., Joint settlement of Dahurian (Ochotona dauurica Pallas, 1776) and Mongolian (Ochotona pallasii Gray, 1867) pikas: acoustical diagnostics, Biologia (Bratislava), 1989, vol. 44, pp. 585–592.

    Google Scholar 

  26. Oliver, T.N., Smithers, R.J., Bailey, S., Walmsley, C.A., and Watts, K., A decision framework for considering climate change adaptation in biodiversity conservation planning, J. Appl. Ecol., 2012, vol. 49, pp. 1247–1255.

    Google Scholar 

  27. Pavlov, D.S., Shagdarsuren, O., Kamelin, R.V., and Ulziikhutag, N., The 35 years of activities of Join Russian-Mongolian Complex Biological Expedition of the Russian Academy of Sciences and Mongolian Academy of Sciences, Arid.Ekosist., 2004, vol. 10, nos. 24–25, pp. 8–16.

    Google Scholar 

  28. Pei, W., The upper cave fauna of Choukoutien, Paleontol. Sin., C, 1940, vol. 10, p. 61.

  29. Phillips, S.J. and Dudik, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, pp. 161–175.

    Google Scholar 

  30. Phillips S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, nos. 3–4, pp. 231–259.

    Google Scholar 

  31. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., and Blair, M.E., Opening the black box: an open-source release of Maxent, Ecography, 2017, vol. 40, pp. 887–893.

    Google Scholar 

  32. Phillips, S.J., Dudík, M., and Schapire, R.E., Maxent software for modeling species niches and distributions, Version 3.4.1, 2019. http://biodiversityinformatics.amnh. org/open_source/Maxent/. Accessed August 23, 2019.

  33. Ponder, W.F., Carter, G.A., Flemons, P., and Chapman, R.R., Evaluation of museum collection data for use in biodiversity assessment, Conserv. Biol., 2001, vol. 15, no. 3, pp. 648–657.

    Google Scholar 

  34. Population Viability Analysis, Beissenger, S.R. and McCullough, D.R., Eds., Chicago: The Univ. of Chicago Press, 2002.

  35. Potemkina, T.G., Potemkin, V.L., and Guseva, E.A., Lake-river system of the Baikal Lake-Selenga River under impact of environmental changes, Izv. Sib. Otd., Sekts. Nauk Zemle, Ross. Akad. Estestv. Nauk, 2016, no. 2 (55), pp. 103–115.

  36. Sahneh, S.K., Nouri, Z., Shabani, A.A., Ahmadi, M., and Dargahi, M.D., Bioclimatic niche model to predict Afghan pika (Ochotona rufescens) distribution range in Iran, Biol.Forum, 2014, vol. 6, no. 2, pp. 98–109.

    Google Scholar 

  37. Shchetnikov, A.A., Bezrukova, E.V., Kazansky, A.Yu., Matasova, G.G., Ivanova, V.V., Danukalova, G.A., Filinov, I.A., Khenzykhenova, F.I., Osipova, E.M., Berdnikova, N.E., Berdnikov, I.M., Rogovskoi, E.O., Lipnina, E.A., and Vorobyeva, G.A., Upper Paleolithic site Tuyana—a multi-proxy record of sedimentation and environmental history during the Late Pleistocene and Holocene in the Tunka rift valley, Baikal region, Quat. Int., 2019, vol. 534, pp. 138–157.

    Article  Google Scholar 

  38. Smith, A.T., The distribution and dispersal of pikas: influences of behavior and climate, Ecology, 1974, vol. 55. pp. 1368–1376.

    Article  Google Scholar 

  39. Smith, A.T., Johnston, C.H., Alves, P., and Hackländer, K., Lagomorphs: Pikas, Rabbits, and Hares of the World, Baltimore: Johns Hopkins Univ. Press, 2018.

    Google Scholar 

  40. Sokolov, V.E., Ivanitskaya, E.Yu., Gruzdev, V.V., and Geptner, V.G., Mlekopitayushchie Rossii i sopredel’nykh regionov. Zaitseobraznye (Mammals of Russia and Adjacent Regions: Lagomorphs), Moscow: Nauka, 1994.

  41. Starkov, A.I., Ecology of the Daurian pika Ochotona dauurica Pallas, 1776 in Southwestern Transbaikalia, Cand. Sci. (Biol.) Dissertation, Ulan-Ude, 2014.

  42. Starkov, A.I., Borisova, N.G., and Galieva, G.R., The Daurian pika (Ochotona dauurica Pallas, 1776) is a key species in steppe ecosystems of Southwestern Transbaikalia, Trudy Tret’ei Vserossiiskoi konferentsii “Raznoobrazie pochv i bioty Severnoi i Tsentral’noi Azii” (Proc. Third All-Russ. Conf. “Diversity of Soils and Biota of Northern and Central Asia”), Ulan-Ude, 2016, pp. 270–272.

  43. Støa, B., Halvorsen, R., Mazzoni, S., and Gusarov, V.I., Sampling bias in presence-only data used for species distribution modeling: theory and methods for detecting sample bias and its effects on models, Sommerfeltia, 2018, vol. 38, pp. 1–53.

    Google Scholar 

  44. Urban, M.C., Zarnetske, P.L., and Skelly, D., Searching for biotic multipliers of climate change, Integr. Comp. Biol., 2017, vol. 57, pp. 134–147.

    PubMed  Google Scholar 

  45. van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F, Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., and Rose, S.K., The representative concentration pathways: an overview, Clim. Change, 2011, vol. 109, p. 5.

    Google Scholar 

  46. Vaughan, P. and Ormerod, S.J., The continuing challenges of testing species distribution, J. Appl. Ecol., 2005, vol. 42, no. 4, pp. 720 – 730.

    Google Scholar 

  47. Viable Populations for Conservation, Soulé, M.E., Ed., Cambridge: Cambridge Univ. Press, 1987.

    Google Scholar 

  48. Warren, D.L., Glor, R.E., and Turelli, M., ENMTools: a toolbox for comparative studies of environmental niche models, Ecography, 2010, vol. 33, pp. 607–611.

    Google Scholar 

  49. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M., MIROC-ESM 2010: model description and basic results of CMIP5-20c3 m experiments, Geosci. Model. Dev., 2011, vol. 4, pp. 845–872.

    Google Scholar 

  50. Weiner, J. and Górecki, A., Standard metabolic rate and thermoregulation in five species of Mongolian small mammals, J. Comp. Physiol., 1981, vol. 145, pp. 127–132.

    Google Scholar 

  51. Wenger, S.J. and Olden, J.D., Assessing transferability of ecological models: an underappreciated aspect of statistical validation, Methods Ecol. Evol., 2012, vol. 3, pp. 260–267.

    Google Scholar 

  52. Willeit, M., Ganopolski, A., Calov, R., and Brovkin, V., Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal, Sci. Adv., 2019, vol. 5, p. eaav7337.

  53. Wu, Y.-N., Ma, Y.-J., Liu, W.-L., and Zhang, W.-Z., Modeling the spatial distribution of Plateau pika (Ochotona curzoniae) in the Qinghai Lake basin, China, Animals (Basel), 2019, no. 9. 843.

  54. Yackulic, Ch.B., Chandler, R., Zipkin, E.F., Royle, J.A., Nichols, J.D., Campbell Grant, E.H., and Veran, S., Presence-only modeling using MAXENT: when can we trust the inferences? Methods Ecol. Evol., 2013, vol. 4, pp. 236–243.

    Google Scholar 

  55. Zarnetske, Ph.L., Skelly, D.K., and Urban, M.C., Biotic multipliers of climate change, Science, 2012, vol. 336, pp. 1516–1518.

    CAS  PubMed  Google Scholar 

  56. Zech, W., Andreeva, D., Zech, M., Bliedtner, M., Glaser, B., Hambach, U., Erbajeva, M., and Zech, R., The Tologoi record: a terrestrial key profile for the reconstruction of Quaternary environmental changes in semiarid Southern Siberia, Proc. 3rd Asian Association for Quaternary Research (ASQUA) Conf., Abstracts of Papers, Lotte City, 2017, p. 13.

Download references

Funding

This study was supported by the Basic Research Program of the State Academies of Sciences for 2013–2020, projects nos. VI.51.1.2 (AAAA-A17-117011810035-6) and IX.127.1.5. (AAAA-A16-116121550056-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Borisova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, N.G., Starkov, A.I., Lizunova, A.V. et al. Spatial Assessment of the Climatic Niche of Daurian Pika. Contemp. Probl. Ecol. 13, 469–483 (2020). https://doi.org/10.1134/S1995425520050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520050030

Keywords:

Navigation