Skip to main content
Log in

Using Data on the Thermal Conditions of Soils for the Differentiation of Vegetation in the Exposure-Related Forest-Steppe of Transbaikalia

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The results of the long-term monitoring (from 2008 to 2018) of thermal conditions have been applied to assess the ecotopological differentiation of vegetation in the exposure-related forest-steppe of Transbaikalia. Significant differences are revealed between thermal conditions on northern and southern slopes, as well as between different kinds of forest-steppe along the aridity and continentality gradients. The temperature conditions on southern slopes are relatively unified and determine the formation of vegetation of one steppe class: Cleistogenetea squarrosae. The temperature conditions on northern slopes are more heterogeneous and result in the development of plant communities of different classes: steppes of the class Cleistogenetea squarrosae and forests of the hemiboreal class Rhytidio-Laricetea and of the boreal class Vaccinio-Piceetea. Differences in soil temperature are additionally affected by the size of forest plots in the forest-steppe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Alekseev, V.A., Svetovoi rezhim lesa (Light Regime of Forest), Leningrad: Nauka, 1975.

  2. Allen, M.R., Dube, O.P., Solecki, W., Aragón-Durand, F., Cramer, W., Humphreys, S., Kainuma, M., Kala, J., Mahowald, N., Mulugetta, Y., Perez, R., Wairiu, M., and Zickfeld, K., Framing and context, in Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J.B.R., Chen, Y., Zhou, X., and Gomis, M.I., Eds., Geneva: Intergov. Panel Clim. Change, 2018.

    Google Scholar 

  3. Anenkhonov, O.A., Phytososological aspects of “buffering” of vegetation in prolonged climatogenic successions, Materialy Vserossiiskoi nauchnoi konferentsii “Problemy sokhraneniya raznoobraziya pokrova Vnutrennei Azii” (Proc. Al-Russ. Sci. Conf. “Conservation of Vegetation Cover Diversity in Inner Asia”), Ulan-Ude: Buryat. Nauchn. Tsentr, Sib. Otd., Ross. Akad. Nauk, 2004, part 2, pp. 3–5.

  4. Anenkhonov, O.A., Forest vegetation of Western Transbaikalia and its possible climatogenic dynamics, Doctoral (Biol.) Dissertation, Ulan-Ude, 2015.

  5. Anenkhonov, O.A., Liu, H., Hu, G., and Badmaeva, N.K., Monitoring of hydrothermal conditions in exposition forest-steppe of Western Transbaikalia, Vestn. Buryat. Nauchn. Tsentra, Sib. Otd., Ross. Akad. Nauk, 2014, no. 3 (15), pp. 255–263.

  6. Anenkhonov, O.A., Korolyuk, A.Yu., Sandanov, D.V., Liu, H., Zverev, A.A., and Guo, D., Soil-moisture conditions indicated by field-layer plants help identify vulnerable forests in the forest-steppe of semi-arid Southern Siberia, Ecol. Indic., 2015, vol. 57, pp. 196–207.

    Article  Google Scholar 

  7. Anenkhonov, O.A., Korolyuk, A.Yu., Sandanov, D.V., Naidanov, B.B., Zverev, A.A., and Chimitov, D.G., Phytocenotic diversity and dynamics of thermal conditions of forest-steppe Buryatia, Materialy Mezhdunarodnoi nauchnoi konferentsii posvyashchennoi 100-letiyu vysshego biologicheskogo obrazovaniya v Vostochnoi Sibiri “Sovremennye problemy biologii, ekologii i pochvovedeniya” (Proc. Int. Sci. Conf. Dedicated to the 100th Anniversary of Establishment of Higher Biological Education in Eastern Siberia “Modern Problems of Biology, Ecology, and Soil Science”), Irkutsk: Irkutsk. Gos. Univ., 2019, pp. 19–21.

  8. Bazha, S.N., Gunin, P.D., and Kontsov, S.V., Experience of investigation of the hydrothermal regime of dark chestnut soils of Central Mongolia, Arid Ecosyst., 2012, vol. 2, no. 1, pp. 34–44.

    Article  Google Scholar 

  9. Bennie, J., Huntley, B., Wiltshire, A., Hill, M.O., and Baxter, R., Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland, Ecol. Model., 2008, vol. 216, pp. 47–59.

    Article  Google Scholar 

  10. Beresneva, I.A., Thermal balance of layering surface in the People’s Republic of Mongolia, Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, 1980, no. 441, pp. 117–126.

  11. Beresneva, I.A., Climate, in Gornaya lesostep’ Vostochnogo Khangaya (Mountain Forest-Steppe of Eastern Khangai Mountains), Moscow: Nauka, 1983, pp. 32–39.

  12. Bessolitsyna, E.P., Kakareka, S.V., Krauklis, A.A., and Kremer, L.K., Geosistemy kontakta taigi i stepi: yug Tsentral’noi Sibiri (Geosystems of the Contact of Taiga and Steppe: South of Central Siberia), Novosibirsk: Nauka, 1991.

  13. Chimitdorzhieva, G.D., Organicheskoe veshchestvo kholodnykh pochv (Organic Matter of Cold Soils), Ulan-Ude: Buryat. Nauchn. Tsentr, Sib. Otd., Ross. Akad. Nauk, 2016.

  14. Desyatkin, R.V., Desyatkin, A.R., and Fedorov, P.P., Temperature regime of permafrost-taiga soils of Central Yakutia, Kriosfera Zemli, 2012, vol. 16, no. 2, pp. 70–78.

    Google Scholar 

  15. Diekmann, M., Species indicator values as an important tool in applied plant ecology—a review, Basic Appl. Ecol., 2003, vol. 4, pp. 493–506.

    Article  Google Scholar 

  16. Dulamsuren, Ch. and Hauck, M., Spatial and seasonal variation of climate on steppe slopes of the northern Mongolian mountain taiga, Grassland Sci., 2008, vol. 54, pp. 217–239.

    Article  Google Scholar 

  17. Erdős, L., Ambarlı, D., Anenkhonov, O.A., Bátori, Z., Cserhalmi, D., Kröel-Dulay, G., Liu, H., Magnes, M., Molnár, Z., Naqinezhad, A., Semenishchenkov, Y.A., Tölgyesi, C., and Török, P., The edge of two worlds: A new review and synthesis on Eurasian forest-steppes, Appl. Veg. Sci., 2018, vol. 21, pp. 345–362.

    Article  Google Scholar 

  18. Friedman, M., The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc., 1937, vol. 32, no. 200, pp. 675–701.

    Article  Google Scholar 

  19. Grigor’ev, A.A. and Budyko, M.I., Climatic zonation, in Fiziko-geograficheskii atlas mira (Physical-Geographic World Atlas), Moscow: Akad. Nauk SSSR, 1964, p. 203.

  20. Guo, W., Liu, H., Anenkhonov, O.A., Shangguan, H., Sandanov, D.V., Korolyuk, A.Yu., Hu, G., and Wu, X., Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes, Agric. For. Meteorol., 2018, vol. 252, pp. 10–17.

    Article  Google Scholar 

  21. Gutiérrez-Jurado, H.A., Vivoni, E.R., Cikoski, C., Harrison, J.B.J., Bras, R.L., and Istanbulluoglu, E., On the observed ecohydrologic dynamics of a semiarid basin with aspect-delimited ecosystems, Water Resour. Res., 2013, vol. 49, pp. 8263–8284.

    Article  Google Scholar 

  22. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, pp. 1965–1978.

    Article  Google Scholar 

  23. Hu, G., Liu, H., Anenkhonov, O.A., Korolyuk, A.Yu., Sandanov, D.V., and Guo, D., Forest buffers soil temperature and postpones soil thaw as indicated by three-year large-scale soil temperature monitoring in the forest-steppe ecotone in Inner Asia, Global Planet. Change, 2013, vol. 104, pp. 1–6.

    Article  Google Scholar 

  24. Ippolitov, I.I., Kabanov, M.V., and Loginov, S.V., Spatiotemporal scales of warming observes in Siberia, Dokl. Earth Sci., 2007, vol. 413, no. 1, pp. 248–251.

    Article  CAS  Google Scholar 

  25. Khansaritoreh, E., Dulamsuren, C., Klinge, M., Ariunbaatar, T., Bat-Enerel, B., Batsaikhan, G., Ganbaatar, K., Saindovdon, D., Yeruult, Y., Tsogtbaatar, J., Tuya, D., Leuschner, C., and Hauck, M., Higher climate warming sensitivity of Siberian larch in small than large forest islands in the fragmented Mongolian forest-steppe, Global Change Biol., 2017, vol. 23, pp. 3675–3689.

    Article  Google Scholar 

  26. Khudyakov, O.I., Pochvy lesostepi Vnutrennei Azii (Soils of Forest-Steppe of Inner Asia), Moscow, 2009.

  27. Kochy, M. and Wilson, S.D., Litter decomposition and nitrogen dynamics in aspen forest and mixed-grass prairie, Ecology, 1997, vol. 78, pp. 732–739.

    Article  Google Scholar 

  28. Konstantinov, P.Ya., The effect of climate in the beginning of winter season on dynamics of freezing of soils in taiga landscapes in Central Yakutia, in Klimat i merzlota: Kompleksnye issledovaniya v Yakutii (Climate and Permafrost: Complex Studies in Yakutia), Yakutsk: Inst. Merzlotoved., Sib. Otd., Ross. Akad. Nauk, 2000, pp. 110–113.

  29. Korolyuk, A.Yu., Ecological optimums for the plants of the Southern Siberia, Bot. Issled. Sib. Kazakh., 2006, no. 12, pp. 3–38.

  30. Korolyuk, A.Yu., Approaches to the analysis of the structure of vegetation cover of landscapes with rugged relief, Izv. Samar. Nauchn. Tsentra,Ross. Akad. Nauk, 2012, vol. 14, nos. 1–5, pp. 1280–1283.

    Google Scholar 

  31. Korolyuk, A.Yu., Syntaxonomy of steppe vegetation in the Republic of Buryatia, Rastit. Ross., 2017, no. 31, pp. 3–32.

  32. Kulikov, A.I., Ubugunov, L.L., and Mangataev, A.Ts., Global climate change and its impact on ecosystems, Arid Ecosyst., 2014, vol. 4, no. 3, pp. 135–141.

    Article  Google Scholar 

  33. Liu, H., He, S., Anenkhonov, O.A., Hu, G., Sandanov, D.V., and Badmaeva, N.K., Topography-controlled soil water content and the coexistence of forest and steppe in Northern China, Phys. Geogr., 2012, vol. 33, no. 6, pp. 561–573.

    Article  Google Scholar 

  34. Mokhov, I.I., Karpenko, A.A., and Stott, P.A., Highest rates of regional climate warming over the last decades and assessment of the role of natural and anthropogenic factors, Dokl. Earth Sci., 2006, vol. 406, no. 1, pp. 158–162.

    Article  CAS  Google Scholar 

  35. Nelson, A.S. Wagner, R.G., Day, M.E., Fernandez, I.J., Weiskittel, A.R., and Saunders, M.R., Light absorption and light-use efficiency of juvenile white spruce trees in natural stands and plantations, For. Ecol. Manage., 2016, vol. 376, pp. 158–165.

    Article  Google Scholar 

  36. Nogina, N.A., Pochvy Zabaikal’ya (Soils of Transbaikalia), Moscow: Nauka, 1964.

  37. Polevaya gobotanika (Field Geobotany), Moscow, 1964, vol. 3.

  38. Sandanov, D.V. and Korolyuk, A.Yu., Assessment of hydrothermal conditions in exposition forest-steppe of Inner Asia based on direct and estimated parameters, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Ekologiya i geografiya rastenii i rastitel’nykh soobshchestv” (Proc. IV Int. Sci. Conf. “Ecology and Geography of the Plants and Their Communities”), Yekaterinburg, 2018, pp. 851–855.

  39. Sandanov, D.V., Anenkhonov, O.A., Naidanov, B.B., Zverev, A.A., and Chimitov, D.G., Seasonal dynamics of hydrothermal conditions in the forest-steppe of Western Transbaikalia, Materialy Mezhdunarodnoi konferentsii “Aktual’nye voprosy biogeografii” (Proc. Int. Conf. “Urgent Problems in Biogeography”), St. Petersburg, 2018, pp. 356–358.

  40. Smolander, S. and Stenberg, P., A method for estimating light interception by a conifer shoot, Tree Physiol., 2001, vol. 21, pp. 797–803.

    Article  CAS  Google Scholar 

  41. Spearman, C., The proof and measurement of association between two things, Am. J. Psychol., 1904, vol. 15, no. 1, pp. 72–101.

    Article  Google Scholar 

  42. Statistica: data analysis software system, version 10.0, StatSoft, 2011. http://www.statsoft.com/. Accessed February 12, 2020.

  43. Title, P.O. and Bemmels, J.B., ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling, Ecography, 2018, vol. 41, no. 2, pp. 291–307.

    Article  Google Scholar 

  44. Trenberth, K.E. and Fasullo, J.T., An apparent hiatus in global warming? Earth’s Future, 2013, vol. 1, no. 1, pp. 19–32.

    Article  Google Scholar 

  45. Tsel’niker, Yu.L., Radiatsionnyi rezhim pod pologom lesa (Radiation Regime under Forest Shelter), Moscow, 1969.

  46. Tsybzhitov, Ts.Kh. and Tsybzhitov, A.Ts., Pochvy basseina ozera Baikal. Tom 2. Genezis, geografiya i klassifikatsiya stepnykh i lesostepnykh pochv (Soils of the Baikal Lake Basin, Vol. 2: Genesis, Geography, and Classification of Steppe and Forest-Steppe Soils), Ulan-Ude: Buryat. Nauchn. Tsentr, Sib. Otd., Ross. Akad. Nauk, 2000.

  47. Tsybzhitov, Ts.Kh., Tsybikdorzhiev, Ts.Ts., and Tsybzhitov, A.Ts., Pochvy basseina ozera Baikal. Tom 1. Genezis, geografiya i klassifikatsiya kashtanovykh pochv (Soils of the Baikal Lake Basin, Vol. 1: Genesis, Geography, and Classification of Chestnut Soils), Novosibirsk: Nauka, 1999.

  48. Ubugunova, V.I., Andreeva, M.N., and Ubugunov, V.L., Soils of pine forests of Western Transbaikalia, Vestn. Buryat. Gos. S-kh. Akad. im. V.R. Filippova, 2009, no. 2 (15), pp. 34–41.

  49. Wilcoxon, F., Individual comparisons by ranking methods, Biometrics, 1945, vol. 1, no. 6, pp. 80–83.

    Article  Google Scholar 

  50. Xu, Ch., Liu, H., Anenkhonov, O.A., Korolyuk, A.Yu., Sandanov, D.V., Balsanova, L.D., Naidanov, B.B., and Wu, X., Long-term forest resilience to climate change indicated by mortality, regeneration, and growth in semi-arid southern Siberia, Global Change Biol., 2017, vol. 23, no. 6, pp. 2370–2382.

    Article  Google Scholar 

  51. Xu, Y., Ramanathan, V., and Victor, D.G., Global warming will happen faster than we think, Nature, 2018, vol. 564, pp. 30–32.

    Article  CAS  Google Scholar 

  52. Zverev, A.A., Informatsionnye tekhnologii v issledovaniyakh rastitel’nogo pokrova: uchebnoe posobie (Information Technologies in the Studies of Vegetation Cover: Manual), Tomsk: TML-Press, 2007.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-44-030025, and was performed according to the State Task nos. AAAA-A17-117011810036-3 (Institute of General and Experimental Biology, Siberian Branch, Russian Academy of Sciences) and AAAA-A17-117012610052-2 (Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Anenkhonov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anenkhonov, O.A., Sandanov, D.V., Liu, H. et al. Using Data on the Thermal Conditions of Soils for the Differentiation of Vegetation in the Exposure-Related Forest-Steppe of Transbaikalia. Contemp. Probl. Ecol. 13, 522–532 (2020). https://doi.org/10.1134/S1995425520050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520050029

Keywords:

Navigation