Skip to main content
Log in

Methods and Difficulties of Identifying Species in Studies on the Ecology and Distribution Patterns of Spore Organisms

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The use of molecular biology methods for identifying species of fungi and myxomycetes (DNA barcoding) has shown the necessity of reconsidering our views on the ecology and habitats of many species of spore organisms. Spores of basidiomycetes and myxomycetes can spread over considerable distances by water, wind, and insects, resulting in their resettlement to various distant habitats, where the only limiting factors are microenvironment and suitable substrates. The possibility of inhabiting various “island” habitats, for example, such as large tree debris in steppe regions or special microclimatic conditions on the bottoms of ravines and gullies in the forest steppe, where the humidity is much higher than on the plain areas, allows spore organisms to expand their habitats and settle in natural areas that are not typical for them. Our original research, an analysis of literature sources, and GenBank data have shown that, when studying the ecology and distribution patterns of spore-like organisms, issues of correctly identifying species are quiet questionable. This article discusses examples using the influence of the hypothesis Everything is everywhere, but, the environment selects (EiE hypothesis) on understanding the ecology and ranges of some species of myxomycetes and basidiomycetes. Data on the distribution and ecology of nivicolous myxomycetes Lamproderma pseudomaculatum on the plain territory of Western Siberia are presented for the first time. Using the myxomycetes Arcyria imperialis and Astipata, as well as fungi Disciseda hyalothrix and Pleurotus pulmonarius, we envisage the possibility of a DNA barcoding application for studies of the species diversity of spore organisms and the morphological differentiation of similar species and for correctly interpreting their ranges and ecology. rDNA sequences have been studied for all these species; for myxomycetes, photos have been taken on a scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Adams, T.J.H., Williams, E.N.D., Todd, N.K., and Rayner, A.D.M., A species-specific method of analyzing populations of basidiospores, Trans. Br. Mycol. Soc., 1984, vol. 82, pp. 359–361.

    Google Scholar 

  2. Alexopoulos, C.J., The myxomycetes II, Bot. Rev., 1963, vol. 29, pp. 1–78.

    Google Scholar 

  3. Beijerinck, M.W., Oxidation des Mangancarbonates durch Bakterien und Schimmelpilze, Folia Microbiol., 1913, vol. 2, pp. 1–12

    Google Scholar 

  4. Blackwell, M.R., Laman, T.G., and Gilbertson, R., Spore dispersal in Fuligo septica (Myxomycetes) by lathridiid beetles, Mycotaxon, 1982, vol. 14, pp. 58–60.

    Google Scholar 

  5. Corner, E., The agaric genera Lentinus, Panus, and Pleurotus with particular reference to Malaysian species, Beih. Nova Hedwigia, 1981, vol. 69, pp. 1–169.

    Google Scholar 

  6. Erastova, D.A., Novozhilov, Yu.K., and Schnittler, M.N., Nivicolous myxomycetes of the Khibiny Mountains, Kola Peninsula, Russia, Nova Hedwigia, 2017, vol. 104, nos. 1–3, pp. 85–110.

    Google Scholar 

  7. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783–791.

    PubMed  Google Scholar 

  8. Finlay, B.J. and Clarke, K.J., Ubiquitous dispersal of microbial species, Nature, 1999, vol. 400, p. 828.

    CAS  Google Scholar 

  9. Fenchel, T. and Finlay, B.J., The ubiquity of small species: patterns of local and global diversity, Bioscience, 2004, vol. 54, pp. 777–784.

    Google Scholar 

  10. Fiore-Donno, A.M., Kamono, A., Meyer, M., Schnittler, M., Fukui, M., and Cavalier-Smith, T., 18S rDNA phylogeny of Lamproderma and allied genera (Stemonitales, Myxomycetes, Amoebozoa), PLoS One, 2012, vol. 7, p. e35359.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fiore-Donno, A.M., Clissmann, F., Meyer, M., Schnittler, M., and Cavalier-Smith, T., Two-gene phylogeny of bright-spored Myxomycetes (Slime Moulds, Superorder Lucisporidia), PLoS One, 2013, vol. 8, p. e62586.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Foissner, W., Biogeography and dispersal of micro-organisms: a review emphasizing Protists, Acta Protozool., 2006, vol. 45, pp. 111–136.

    Google Scholar 

  13. Gardes, M. and Bruns, T.D., ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts, Mol. Ecol., 1993, vol. 2, pp. 113–118.

    CAS  PubMed  Google Scholar 

  14. Gorbunova, I.A. and Rebriev, Yu.A., New data on the biota of gastromycetes of the Altai-Sayan mountain region, Rastit. Mir Aziat. Ross., 2016, vol. 2, pp. 3–7.

    Google Scholar 

  15. Hallenberg, N. and Kuffer, N., Long-distance spore dispersal in wood-inhabiting Basidiomycetes, Nord. J. Bot., 2001. 21, pp. 431–436.

    Google Scholar 

  16. Higgins, D., Thompson, J., Gibson, T., Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    PubMed  PubMed Central  Google Scholar 

  17. Keller, H.W. and Smith, D.M., Dissemination of myxomycete spores trough the feeding activities (ingestion-defecation) of an acarid mite, Mycologia, 1978, vol. 70, pp. 1239–1241.

    Google Scholar 

  18. Kumar, S., Stecher, G., and Tamura, K., MEGA7: molecular evolutionary genetics analysis versión 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, pp. 1870–1874.

    CAS  PubMed  Google Scholar 

  19. Martin, G.W. and Alexopoulos, C.J., The Myxomycetes, Iowa City: Univ. of Iowa Press, 1969.

    Google Scholar 

  20. Meylan, C., Les espèces nivales du genere Lamproderma,Bull. Soc. Vaud. Sci. Nat., 1931, vol. 57, pp. 359–373.

    Google Scholar 

  21. Newton, A.F.S. and Stephenson, S.L., A beetle/slime mold assemblange from Northern India (Coleoptera; Myxomycetes), Orient. Insects, 1990, vol. 24, pp. 197–218.

    Google Scholar 

  22. Norden, B. and Larsson, K.-H., Basidiospore dispersal in the old-growth forest fungus Plebia centrifuga (Basidiomycetes), Nord. J. Bot., 2000, vol. 20, pp. 215–219.

    Google Scholar 

  23. Novozhilov, Yu.K., Myxomycetes (class Myxomycetes) of Russia: taxonomic composition, ecology, and geography, Doctoral (Biol.) Dissertation, St. Petersburg, 2005.

  24. Novozhilov, Y.K., Schnittler, M., Vlasenko, A.V., and Fefelov, K.A., Myxomycete diversity of the Altay Mts. (southwestern Siberia, Russia), Mycotaxon, 2010, vol. 111, pp. 91–94.

    Google Scholar 

  25. Novozhilov, Y.K., Rollins, A., and Schnittler, M., Ecology and distribution of Myxomycetes, in Myxomycetes: Biology, Systematics, Biogeography and Ecology, Stephenson, S.L. and Rojas, C.A., Eds., London: Academic, 2017, pp. 253–297.

    Google Scholar 

  26. Pegler, D.N., Pleurotus (Agaricales) in India, Nepal and Pakistan, Kew Bull., 1977, vol. 31, pp. 501–510.

    Google Scholar 

  27. Pegler, D.N., Agaric flora of Sri Lanka, Kew Bull., 1986, vol. 12, pp. 1–519.

    Google Scholar 

  28. Redhead, S.A., A biogeographical overview of the Canadian mushroom flora, Can. J. Bot., 1989, vol. 67, pp. 3003–3062.

    Google Scholar 

  29. Ronikier, A. and Ronikier, M., How ‘alpine’ are nivicolous myxomycetes? A worldwide assessment of altitudinal distribution, Mycologia, 2009, vol. 101, pp. 1–16.

    CAS  PubMed  Google Scholar 

  30. Shchepin, O.N., Schnittler, M., Erastova, D.A., Prikhodko, I.S., Borg Dahl, M., Azarov, D.V., Chernyaeva, E.N., and Novozhilov, Y.K., Community of dark-spored myxomycetes in ground litter and soil of taiga forest (Nizhne-Svirskiy Reserve, Russia) revealed by DNA metabarcoding, Fungal Ecol., 2019, vol. 39, pp. 80–93.

    Google Scholar 

  31. Sneath, P.H. and Sokal, R.R., Numerical Taxonomy, San Francisco: W.H. Freeman, 1973.

    Google Scholar 

  32. Stephenson, S.L., Wheeler, Q.D., McHugh, J.V.P., and Fraissinet, P.R., New North American associations of Coleoptera with Myxomycetes, J. Nat. Hist., 1994, vol. 28, no. 4, pp. 921–936.

    Google Scholar 

  33. Stephenson, S.L., Novozhilov, Y.K., and Schnittler, M., Distribution and ecology of Myxomycetes in high-latitude regions of the Northern Hemisphere, J. Biogeogr., 2000, vol. 27, pp. 741–754.

    Google Scholar 

  34. Stephenson, S.L., Schnittler, M., and Novozhilov, Y.K., Myxomycete diversity and distribution from the fossil record to the present, Biodiversity Conserv., 2008, vol. 17, no. 2, pp. 285–301.

    Google Scholar 

  35. Tamura, K., Nei, M., and Kumar, S., Prospects for inferring very large phylogenies by using the neighbor-joining method, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 11030–11035.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tedersoo, L., Bahram, M., Põlme, S., et al., Global diversity and geography of soil fungi, Science, 2014, vol. 346, no. 6213, art. ID 1256688.

    PubMed  Google Scholar 

  37. Tran, H.T.M., Stephenson, S.L., Hyde, K.D., and Mongkolporn, O., Distribution and occurrence of Myxomycetes on agricultural ground litter and forest floor litter in Thailand, Mycologia, 2008, vol. 100, pp. 181–190.

    PubMed  Google Scholar 

  38. Vilgalys, R. and Sun, B.L., Assessment of species distribution in Pleurotus based on trapping of airborne basidiospores, Mycologia, 1994, vol. 86, pp. 270–274.

    Google Scholar 

  39. Vlasenko, A.V. and Novozhilov, Yu.K., Rare and new for Russia species of myxomycetes (Myxomycetes) of Russia from pine forests on the right bank of the Upper Ob region, Mikol. Fitopatol., 2010, vol. 44, no. 2, pp. 99–108.

    Google Scholar 

  40. Vlasenko, A.V. and Novozhilov, Yu.K., Myxomycetes of pine forests on the right-bank part of the Upper Ob’ region, Mikol. Fitopatol., 2011, vol. 45, no. 6, pp. 465–477.

    Google Scholar 

  41. Vlasenko, V.A. and Vlasenko, A.V., Wood-decay fungi on woody plants in the green plantations of the Novosibirsk, Vestn. Altai. Gos. Agrar. Univ., 2018, no. 1 (159), pp. 93–97.

  42. Vlasenko, A.V., Novozhilov, Yu.K., Shchepin, O.N., and Vlasenko, V.A., Hydrochory as certain mode of distribution of myxomycetes along floodlands in south of Western Siberia, Mikol. Fitopatol., 2016, vol. 50, no. 1, pp. 14–23.

    Google Scholar 

  43. Vlasenko, A.V., Novozhilov, Yu.K., Vlasenko, V.A., Korolyuk, A.Yu., and Dulepova, N.A., New data on obligate coprobiontic myxomycetes of Siberia, Izv. Irkutsk. Gos. Univ.,Ser.: Biol. Ekol., 2017a, vol. 21, pp. 50–60.

    Google Scholar 

  44. Vlasenko, V.A., Vlasenko, A.V., and Zmitrovich, I.V., First record of Neolentinus lepideus f. ceratoides (Gloeophyllales, Basidiomycota) in Novosibirsk Region, Curr. Res. Environ. Appl. Mycol., 2017b, vol. 7, no. 3, pp. 187–192.

    Google Scholar 

  45. Vlasenko, A.V., Novozhilov, Yu.K., Schnittler, M., Vlasenko, V.A., and Tomoshevich, M.A., Pattern of substrate preferences of free living protists (Myxomycetes) on decaying wood, Contemp. Probl. Ecol., 2018, vol. 11, no 5, pp. 494–502.

    Google Scholar 

  46. Vlasenko, V.A., Asbaganov, S.A., and Vlasenko, A.V., Ecological diversity of some resource medicinal mushrooms of the genus Pleurotus in Novosibirsk oblast, Samar. Nauchn. Vestn., 2019a, vol. 8, no. 4 (29), pp. 34–38.

  47. Vlasenko, V.A., Zmitrovich, I.V., and Vlasenko, A.V., Unusual monstrose form of Neolentinus cyathiformis (Gloeophyllaceae, Basidiomycota) from the Novosibirsk Region (Russia), Bot. Pac., 2019b, vol. 8, no 1, pp. 81–84.

    Google Scholar 

  48. Vlasenko, V.A., Rebriev, Yu.A., Asbaganov, S.V., Dejidmaa, T., and Vlasenko, A.V., Morphological characteristics and molecular phylogeny of Disciseda hyalothrix (Gasteromycetes) from Altai Mountains, a new record to Northern Asia, Curr. Res. Environ. Appl. Mycol., 2020, vol. 10, no. 1, pp. 34–41.

    Google Scholar 

  49. Williams, E.N.D., Todd, N.K., and Rayner, A.D.M., Characterization of the spore rain of Coriolus versicolor and its ecological significance, Trans. Br. Mycol. Soc., 1984, vol. 82, pp. 323–326.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We used materials from Popov Herbarium at the Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences (NSK), Novosibirsk.

Funding

The work of A.V. Vlasenko on myxomycetes was carried out in accordance with a State Task of Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences (AAAA-A17-117012610055-3). The work of Yu.K. Novozhilov on myxomycetes was supported by Russian Foundation for Basic Research, project no. 18-04-01232-A. The work of V.A. Vlasenko on Pleurotus pulmonarius was supported by Russian Foundation for Basic Research and the Government of Novosibirsk region, project no. 18-44-543018 r_mol_a. The work of A.S. Asbaganov and T. Dejidmaa on Disciseda hyalothrix was carried out as part of the project of Russian Foundation for Basic Research and Ministry for Culture, Education, Science, and Sport of Mongolia, project no. 19-54-44002 Mong_T. Materials from the M.G. Popov Herbarium (NSK) in Novosibirsk were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vlasenko.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, A.V., Vlasenko, V.A., Novozhilov, Y.K. et al. Methods and Difficulties of Identifying Species in Studies on the Ecology and Distribution Patterns of Spore Organisms. Contemp. Probl. Ecol. 13, 346–359 (2020). https://doi.org/10.1134/S1995425520040113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520040113

Keywords:

Navigation