Skip to main content
Log in

Woody and Herbaceous Plants of Inner Asia: Species Richness and Ecogeorgraphic Patterns

  • Published:
Contemporary Problems of Ecology Aims and scope

An Erratum to this article was published on 01 September 2020

This article has been updated

Abstract

The diversity of vascular plants in Inner Asia has been researched; the main environmental factors determining the distribution of species belonging to various life forms and having different distribution range sizes have been identified. The key factors determining species diversity in Inner Asia are past climate changes and precipitation parameters. By contrast, the temperature conditions of the current climate do not affect the species richness significantly. The following current climatic parameters are important for woody plants: precipitation seasonality, mean precipitation in winter and spring, and diurnal range of temperature. Quite the opposite, the species richness of herbaceous plants is determined by climate-change velocity from the mid-Holocene and Last Glacial Maximum, the spatial heterogeneity of precipitation, and mean summer temperatures. Over time, distribution ranges of rare plants in the studied region may be reduced due to the increasing aridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

  • 20 October 2020

    erratum

REFERENCES

  1. Albuquerque, F.S. Olallatárraga, M.Á., Montoya, D., and Rodríguez, M.Á., Environmental determinants of woody and herb plant species richness patterns in Great Britain, Ecoscience, 2011, vol. 18, pp. 394–401.

    Article  Google Scholar 

  2. Antonelli, A., Nylander, J.A.A., Persson, C., and Sanmartin, I., Tracing the impact of the Andean uplift on Neotropical plant evolution, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 24, pp. 9749–9754.

    Article  CAS  Google Scholar 

  3. Araújo, M.B., Nogués-Bravo, D., Diniz-Filho, J.A.F., Haywood, A.M., Valdes, P.J., and Rahbek, C., Quaternary climate changes explain diversity among reptiles and amphibians, Ecography, 2008, vol. 31, no. 1, pp. 8–15.

    Article  Google Scholar 

  4. Chistyakov, K.V., Landscapes of Inner Asia: dynamics, history, and use, Doctoral (Geogr.) Dissertation, St. Petersburg, 2001.

  5. Chistyakov, K.V., Natural and anthropogenic factors in the history of steppe depressions of the northeast of Inner Asia, Materialy III Mezhdunarodnogo simpoziuma “Stepi Severnoi Evrazii” (Proc. III Int. Symp. “Steppes of Northern Eurasia”), Orenburg, 2003, pp. 572–575.

  6. Dai, A.G., Trenberth, K.E., and Qian, T.T., A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 2004, vol. 5, no. 6, pp. 1117–1130.

    Article  Google Scholar 

  7. Dirnböck, T., Essl, F., and Rabitsch, W., Disproportional risk for habitat loss of high-altitude endemic species under climate change, Global Change Biol., 2011, vol. 17, pp. 990–996.

    Article  Google Scholar 

  8. Dorofeyuk, N.I., Reconstruction of environmental conditions of Inner Asia in Later Ice Period and Holocene according to diatom and Palynological analyzes of lake sediments in Mongolia, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 2008.

  9. Drobyshev, Yu.I., About definition “Central Asia,” Tsentr. Aziya Yuzh. Sib., 2009, no. 41, pp. 104–138.

  10. Gamalei, Yu.V., Climatic adaptogenesis of life forms of higher plants, Usp. Sovrem. Biol., 2015, vol. 135, no. 4, pp. 323–336.

    Google Scholar 

  11. Girvetz, E.H., Zganjar, C., Raber, G.T., Maurer, E.P., Kareiva, P., and Lawler, J.J., Applied climate-change analysis: the climate wizard tool, PLoS One, 2009, vol. 4, no. 12, p. e8320. https://doi.org/10.1371/journal.pone.0008320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gries, D., Zeng, F., Foetzki, A., Arndt, S.K., Bruelheide, H., Thomas, F.M., Zhang, X., and Runge, M., Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table, Plant, Cell Environ., 2003, vol. 26, pp. 725–736.

    Article  Google Scholar 

  13. Hamann, A., Roberts, D.R., Barber, Q.E., Carroll, C., and Nielsen, S.E., Velocity of climate change algorithms for guiding conservation and management, Global Change Biol., 2015, vol. 21, pp. 997–1004.

    Article  Google Scholar 

  14. Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J. P., Jaramillo, C., Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., et al., Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity, Science, 2010, vol. 330, no. 6006, pp. 927–931.

    Article  CAS  Google Scholar 

  15. Hughes, C.E. and Atchison, G.W., The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains, New Phytol., 2015, vol. 207, pp. 275–282.

    Article  Google Scholar 

  16. Lavrenko, E.M., Karamysheva, Z.V., and Nikulina, R.I., Stepi Evrazii (Steppes of Eurasia), Leningrad: Nauka, 1991.

  17. Li, H. and Yang, X., Temperate dryland vegetation changes under a warming climate and strong human intervention—With a particular reference to the district Xilin Gol, Inner Mongolia, China, Catena, 2014, vol. 119, pp. 9–20.

    Article  Google Scholar 

  18. Linder, H.P., Plant species radiations: where, when, why? Philos. Trans. R. Soc., B, 2008, vol. 363, no. 1506, pp. 3097–3105.

  19. Liu, Y., Su, X., Shrestha, N., Wang, S., Xu, X., Li, Y., Wang, Q., Sandanov, D., and Wang, Z., Effects of contemporary environment and Quaternary climate change on dryland plant diversity differ between growth forms, Ecography, 2019, vol. 42, pp. 334–345.

    Article  Google Scholar 

  20. Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B., and Ackerly, D.D., The velocity of climate change, Nature, 2009, vol. 462, pp. 1052–1055.

    CAS  PubMed  Google Scholar 

  21. Miehe, G., Schlütz, F., Miehe, S., Opgenoorth, L., Vermak, J., Ravčigijn, S., Jäger, J., and Wesche, K., Mountain forest islands and Holocene environmental changes in central Asia: a case study from the southern Gobi Altay, Mongolia, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 250, pp. 150–166.

    Google Scholar 

  22. Mitchell, T.D. and Jones, P.D., An improved method of constructing a database of monthly climate observations and associated high-resolution grids, Int. J. Climatol., 2005, vol. 25, no. 6, pp. 693–712.

    Google Scholar 

  23. Mohammat, A., Wang, X., Xu, X., Peng, L., Yang, Y., Zhang, X., Myneni, R.B., and Piao, S., Drought and spring cooling induced recent decrease in vegetation growth in Inner Asia, Agric. For. Meteorol., 2013, vols. 178–179, pp. 21–30.

    Article  Google Scholar 

  24. Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., and Running, S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 2003, vol. 300, no. 5625, pp. 1560–1563.

    Article  CAS  Google Scholar 

  25. Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’Amigo, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnut, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., et al., Terrestrial ecoregions of the world: a new map of life on Earth, BioScience, 2001, vol. 51, no. 11, pp. 933–938.

    Article  Google Scholar 

  26. Petrov, K.M., Biogeografiya s osnovami okhrany biosfery (Biogeography with Basis of Biosphere Protection), St. Petersburg: S.-Peterb. Gos. Univ., 2001.

  27. Rosenblad, K.C., Perret, D.L., and Sax, D.F., Niche syndromes reveal climate-driven extinction threat to island endemic conifers, Nat. Clim. Change, 2019, vol. 9, pp. 627–631.

    Article  CAS  Google Scholar 

  28. Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J., and Svenning, J.-C., The influence of Late Quaternary climate-change velocity on species endemism, Science, 2011, vol. 334, no. 6056, pp. 660–664.

    Article  CAS  Google Scholar 

  29. Serebryakov, I.G., Ekologicheskaya morfologiya rastenii. Zhiznennye formy pokrytosemennykh i khvoinykh (Ecological Morphology of the Plants. Life Forms of Angiosperms and Coniferous), Moscow: Vysshaya Shkola, 1962.

  30. Sheremet’ev, S.N. and Gamalei, Yu.V., Trends of the herbs ecological evolution, Zh. Obshch. Biol., 2009, vol. 70, no. 6, pp. 459–483.

    PubMed  Google Scholar 

  31. Skripchinskii, V.V., Evolyutsiya ontogeneza rastenii (Evolution of the Plant Ontogenesis), Moscow: Nauka, 1977.

  32. Smirnova, O.V., Palenova, M.M., and Komarov, A.S., Ontogeny of different life forms of plants and specific features of age and spatial structure of their populations, Russ. J. Dev. Biol., 2002, vol. 33, no. 1, pp. 1–10.

    Article  Google Scholar 

  33. Smith, S.A. and Beaulieu, J.M., Life history influences rates of climatic niche evolution in flowering plants, Proc. R. Soc. B, 2009, vol. 276, no. 1677, pp. 4345–4352.

  34. Stein, A., Beck, J., Meyer, C., Waldmann, E., Weigelt, P., and Kreft, H., Differential effects of environmental heterogeneity on global mammal species richness, Global Ecol. Biogeogr., 2015, vol. 24, pp. 1072–1083.

    Article  Google Scholar 

  35. Tietjen, B., Jeltsch, F., Zehe, E., Classen, N., Groengroeft, A., Schiffers, K., and Oldeland, J., Effects of climate change on the coupled dynamics of water and vegetation in drylands, Ecohydrology, 2009, vol. 3, no. 2, pp. 226–237.

    Google Scholar 

  36. Tishkov, A.A., Biogeographical consequences of natural and anthropogenic climate changes, Biol. Bull. Rev., 2012, vol. 2, no. 2, pp. 132–140.

    Article  Google Scholar 

  37. Urgamal, M. and Oyuntsetseg, B., Atlas of the Endemic Vascular Plants of Mongolia, Ulananbaatar, 2017.

    Google Scholar 

  38. Vale, C.G. and Brito, G.C., Desert-adapted species are vulnerable to climate change: insights from the warmest region on Earth, Global Ecol. Conserv., 2015, vol. 4, pp. 369–379.

    Article  Google Scholar 

  39. Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., and Yokohata, T., MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model. Dev., 2011, vol. 4, pp. 845–872.

    Article  Google Scholar 

  40. Werneck, F.P., Costa, G.C., Colli, G.R., Prado, D.E., and Sites, J.W., Revisiting the historical distribution of seasonally dry tropical forests: new insights based on palaeodistribution modeling and palynological evidence, Global Ecol. Biogeogr., 2011, vol. 20, no. 2, pp. 272–288.

    Google Scholar 

  41. Wesche, K., Ambarli, D., Kamp, J., Török, P., Treiber, J., and Dengler, J., The Palaearctic steppe biome: a new synthesis, Biodiversity Conserv., 2016, vol. 25, no. 12, pp. 1–35.

    Google Scholar 

  42. Yu, F., Price, K.P., Ellis, J., Feddema, J.J., and Shi, P., Interannual variations of the grassland boundaries bordering the eastern edges of the Gobi Desert in central Asia, Int. J. Remote Sens., 2004, vol. 25, no. 2, pp. 327–346.

    Google Scholar 

  43. Zhang, G., Kang, Y., Han, G., and Sakurai, K., Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia, Global Change Biol., 2011, vol. 17, no. 1, pp. 377–389.

    Google Scholar 

Download references

Funding

This study was partially performed as part of the state assignment, project no. AAAA-A17-117011810036-3, and supported by the Russian Foundation for Basic Research, project no. 19-54-53014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Sandanov, Y. Liu, Z. Wang or A. Yu. Korolyuk.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by L. Emeliyanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandanov, D.V., Liu, Y., Wang, Z. et al. Woody and Herbaceous Plants of Inner Asia: Species Richness and Ecogeorgraphic Patterns. Contemp. Probl. Ecol. 13, 360–369 (2020). https://doi.org/10.1134/S1995425520040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520040101

Keywords:

Navigation