Skip to main content
Log in

Spatial Variation in the Concentration of Phenolic Compounds and Nutritional Elements in the Needles of Spruce in Northern Taiga Forests

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Patterns of lateral intrabiogeocenotic (between separate elementary biogeoranges) and interbiogeocenotic variability in the content of secondary metabolites and nutritional elements in the different-age needles of spruce (Picea abies ssp. obovata (Ledeb.) Domin) have been studied along the geochemical transect in spruce forests in northern taiga (Kola Peninsula). The perennial needles of spruce undergrowth (30–40 years) are characterized by a higher concentration of carbon, lignin, high-molecular-weight phenolic compounds, bounded tannins, and wide ranges of lignin/cellulose and lignin/N ratios compared to trees older than 100 years. The needles of spruce trees older than 100 years have significantly more bounded tannins and low-molecular-weight phenols in transitional and accumulative sites than in automorphic locations. The concentration of lignin and lignin/N ratio was significantly higher in the 5–7-year-old needles of spruce trees growing in automorphic conditions, while spruce forests in transitional and accumulative sites have the maximum values of these indicators for the current-year needles. Changes in the chemical composition of spruce needles along the geochemical transect are determined by (1) different concentrations of nutritional elements and secondary metabolites in soils; (2) increased soil moisture from automorphic to accumulative sites; (3) the features of the microbiological activity of soils; and (4) environmental factors (light, temperature, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Aitkenhead-Peterson, J.A., Alexander, J.E., Albrechtová, J., Krám, P., Rock, B., Cudlín, P., Hruška, J., Lhotaková, Z., Huntley, R., Oulehle, F., Polák, T., and McDo-well, W.H., Linking foliar chemistry to forest floor solid and solution phase organic C and N in Picea abies (L.) Karst stands in northern Bohemia, Plant Soil, 2006, vol. 283, nos. 1–2, pp. 187–201.

    Article  CAS  Google Scholar 

  2. Artemkina, N.A., The content of phenolic compounds in V. vitis-idaea L. of pine forests of Kola Peninsula, Khim. Rastit. Syr’ya, 2010, no. 3, pp. 153–160.

  3. Artemkina, N.A. and Gorbacheva, T.T., The adsorption of monomeric phenolic forms by soil from plant litter and litters in green moss-spruce forests, Lesovedenie, 2006, no. 3, pp. 50–56.

  4. Artemkina, N.A. and Roshchin, V.I., Extractives of needles and shoots of Picea abies (L.) Karst. 1. Phenolic compounds: extraction and analysis, Rastit. Resur., 2004, vol. 40, no. 3, pp. 77–87.

    CAS  Google Scholar 

  5. Artemkina, N.A. and Roshchin, V.I., Extractives of needles and shoots of Picea abies (Pinaceae). 3. The dynamics of the content of phenolic compounds, Rastit. Resur., 2006, vol. 42, no. 3, pp. 66–73.

    CAS  Google Scholar 

  6. Artemkina, N.A., Orlova, M.A., and Lukina, N.V., Chemical composition of Juniperus sibirica needles (Cupressaceae) in the forest–tundra ecotone, the Khibiny Mountains, Russ. J. Ecol., 2016, vol. 47, no. 4, pp. 321–328.

    Article  CAS  Google Scholar 

  7. Artemkina, N.A., Lukina, N.V., and Orlova, M.A., Spatial dynamics of the content of secondary metabolites, carbon, and nitrogen in the litter of northern taiga spruce forests, Lesovedenie, 2018, no. 1, pp. 37–47.

  8. Barbehenn, R.V. and Constabel, C.P., Tannins in plant–herbivore interactions, Phytochemistry, 2011, vol. 72, no. 13, pp. 1551–1565.

    Article  CAS  PubMed  Google Scholar 

  9. Barton, K.E. and Koricheva, J., The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis, Am. Nat., 2010, vol. 175, no. 4, pp. 481–493.

    Article  PubMed  Google Scholar 

  10. Berg, B., Foliar litter decomposition: a conceptual model with focus on pine (Pinus) litter—A genus with global distribution, ISRN Forestry, 2014, vol. 2014, art. ID 838169.

    Article  Google Scholar 

  11. Blanco, J.A. The representation of allelopathy in ecosystem-level forest models, Ecol. Model., 2007, vol. 209, nos. 2–4, pp. 65–77.

    Article  Google Scholar 

  12. Boege, K. and Marquis, R.J., Erratum: Facing herbivory as you grow up: the ontogeny of resistance in plants, Trends Ecol. Evol., 2005, vol. 20, no. 10, pp. 441–448.

    Article  PubMed  Google Scholar 

  13. Bryant, J.P., Chapin, F.S., III, and Klein, D.R., Carbon : nutrient balance of boreal plants in relation to vertebrate herbivory, Oikos, 1983, vol. 40, no. 3, pp. 357–368.

    Article  CAS  Google Scholar 

  14. Close D.C. and Mcarthur C., Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos, 2002, vol. 99, no. 1, pp. 166–172.

    Article  CAS  Google Scholar 

  15. Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., and Martens, S., Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology, Plant Physiol. Biochem., 2013, vol. 72, pp. 1–20.

    Article  CAS  PubMed  Google Scholar 

  16. Croft, H., Chen, J.M., and Noland, T.L., Stand age effects on boreal forest physiology using a long time-series of satellite data, For. Ecol. Manage., 2014, vol. 328, pp. 202–208.

    Article  Google Scholar 

  17. Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M., Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism, Plant J., 2006, vol. 46, no. 4, pp. 533–548.

    Article  CAS  PubMed  Google Scholar 

  18. Giertych, M.J., Karolewski, P., and de Temmerman, L.O., Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus nigra needles, Water, Air, Soil Pollut., 1999, vol. 110, nos. 3–4, pp. 363–377.

    Article  CAS  Google Scholar 

  19. Hamilton, J.G., Zangerl, A.R., DeLucia, E.H., and Berenbaum, M.R., The carbon-nutrient balance hypothesis: its rise and fall, Ecol. Lett., 2001, vol. 4, no. 1, pp. 86–95.

    Article  Google Scholar 

  20. Hatcher, P.E., Seasonal and age-related variation in the needle quality of five conifer species, Oecologia, 1990, vol. 85, no. 2, pp. 200–212.

    Article  PubMed  Google Scholar 

  21. Hättenschwiler S. and Vitousek P.M., The role of polyphenols in terrestrial ecosystem nutrient cycling, Trends Ecol. Evol., 2000, vol. 15, no. 6, pp. 238–243.

    Article  PubMed  Google Scholar 

  22. Helmisaari, H.-S., Spatial and age-related variation in nutrient concentrations of Pinus sylvestris needles, Silva Fenn., 1992, vol. 26, no. 3, pp. 145–153.

    Article  Google Scholar 

  23. Herms D.A. and Mattson W.J., The dilemma of plants: to grow or defend, Q. Rev. Biol., 1992, vol. 67, no. 3, pp. 283–335.

    Article  Google Scholar 

  24. Horner, J.D., Cates, R.G., and Gosz, J.R., Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage, Oecologia, 1987, vol. 72, no. 4, pp. 515–519.

    Article  CAS  PubMed  Google Scholar 

  25. Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, Boca Raton, Fl: CRC Press, 2001.

    Google Scholar 

  26. Kanerva, S., Kitunen, V., Loponen, J., and Smolander, A., Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine, Biol. Fertil. Soils, 2008, vol. 44, no. 4, pp. 547–556.

    Article  CAS  Google Scholar 

  27. Kashulin, P.A., Kalacheva, N.V., Artemkina, N.A., and Chernous, S.A., Photochemical processes in the Northern plants and environment, Vestn. Murmansk. Gos. Tekh. Univ., 2009, vol. 12, no. 1, pp. 137–142.

  28. Kazimirov, N.I. and Morozova, Biologicheskii krugovorot veshchestv v el’nikakh Karelii (Biological Cycle of Substances in Spruce Forests of Karelia), Leningrad: Nauka, 1973.

  29. Kivimäenpää, M., Riikonen, J., Sutinen, S., and Holopainen, T., Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation, Tree Physiol., 2014, vol. 34, no. 4, pp. 389–403.

    Article  PubMed  CAS  Google Scholar 

  30. Koricheva, J., The Carbon-Nutrient Balance Hypothesis is dead; long live the carbon-nutrient balance hypothesis? Oikos, 2002, vol. 98, no. 3, pp. 537–539.

    Article  CAS  Google Scholar 

  31. Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J., Tannins in nutrient dynamics of forest ecosystems—a review, Plant Soil, 2003, vol. 256, no. 1, pp. 41–66.

    Article  CAS  Google Scholar 

  32. Lukina, N.V. and Nikonov, V.V., Biogeokhimicheskie tsikly v lesakh Severa v usloviyakh aerotekhnogennogo zagryazneniya (Biogeochemical Cycles in Northern Soils Under Air Technogenic Pollution), Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 1996, part 1.

  33. Lukina, N.V., Orlova, M.A., Steinnes, E., Artemkina, N.A., Gorbacheva, T.T., Smirnov, V.E., and Belova, E.A., Mass-loss rates from decomposition of plant residues in spruce forests near the northern tree line subject to strong air pollution, Environ. Sci. Pollut. Res., 2017, vol. 24, no. 24, pp. 19874–19887.

    Article  CAS  Google Scholar 

  34. Luzikov, A.V., Trofimov, S.Ya., and Zagoskina, N.V., Relationship between pool of ammonium ions in soils and the content of phenolic compounds in spruce needles by example of virgin landscapes of Central Forest Nature Reserve, Vestn. Mosk. Univ., Ser. 17: Pochvoved., 2005, no. 3, pp. 42–47.

  35. Makkonen, M., Berg, M.P., Handa, I.T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P.M., and Aerts, R., Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient, Ecol. Lett., 2012, vol. 15, no. 9, pp. 1033–1041.

    Article  PubMed  Google Scholar 

  36. Manakov, K.N. and Nikonov, V.V., Biologicheskii krugovorot mineral’nykh elementov i pochvoobrazovanie v el’nikakh Krainego Severa (Biological Cycle of Mineral Elements and Pedogenesis in Spruce Forests of Extreme North), Leningrad: Nauka, 1981.

  37. Mandre, M., Relationships between lignin and nutrients in Picea abies L. under alkaline air pollution, Water, Air Soil Pollut., 2002, vol. 133, nos. 1–4, pp. 361–377.

    Article  CAS  Google Scholar 

  38. Marakaev, O.A., Celebrowsky, M.V., Nikolaeva, T.N., and Zagoskina, N.V., Some aspects of underground organs of spotleaf orchis growth and phenolic compounds accumulation at the generative stage of ontogenesis, Biol. Bull. (Moscow), 2013, vol. 40, no. 3, pp. 281–288.

    Article  CAS  Google Scholar 

  39. Matyssek, R., Koricheva, J., Schnyder, H., Ernst, D., Munch, J.C., Oßwald, W., and Pretzsch, H., The balance between resource sequestration and retention: a challenge in plant science, in Growth and Defense in Plants, Ecological Studies Series vol. 220, Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, C., and Pretzsch, H., Eds., Berlin: Springer, 2012, pp. 3–24.

    Book  Google Scholar 

  40. Medvedev, S.S., Fiziologiya rastenii: uchebnik (The Plant Physiology: Manual), St. Petersburg: S.-Peterb. Gos. Univ., 2004.

  41. Orlova, M.A., Elementary unit of forest biogeocenotic cover for the assessment of ecosystem functions of forests, Tr. Karel’sk. Nauch. Tsentra, Ser. Ekol. Issled., 2013, no. 6, pp. 126–132.

  42. Orlova, M.A., Lukina, N.V., Smirnov, V.E., and Artemkina, N.A., The influence of spruce on acidity and nutrient content in soils of northern taiga dwarf shrub–green moss spruce forests, Eurasian Soil Sci., 2016, vol. 49, no. 11, pp. 1276–1287.

    Article  CAS  Google Scholar 

  43. Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K., Proanthocyanidins of mountain birch leaves: quantification and properties, Phytochem. Anal., 2001, vol. 12, no. 2, pp. 128–133.

    Article  CAS  PubMed  Google Scholar 

  44. Plaksina, I.V., Sudachkova, N.E., Romanova, L.I., and Milyutina, I.L., Seasonal dynamics of phenolic compounds in the bast and needles of Scots pine and Siberian cedar in plantations with different density, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 103–108.

  45. Preston, C.M., Nault, J.R., Trofymow, J.A., Smyth, C., and CIDET Working Group, Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions, Ecosystems, 2009, vol. 12, no. 7, pp. 1053–1077.

    Article  CAS  Google Scholar 

  46. Rowland, A.P. and Roberts, J.D., Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods, Commun. Soil Sci. Plant Anal., 1994, vol. 25, nos. 3–4, pp. 269–277.

    Article  CAS  Google Scholar 

  47. Rummukainen, A., Julkunen-Tiitto, R., Ryyppö, A., Kaunisto, S., Kilpeläinen, J., and Lehto, T., Long-term effects of boron and copper on phenolics and monoterpenes in Scots pine (Pinus sylvestris L.) needles, Plant Soil, 2013, vol. 373, no. 1, pp. 485–499.

    Article  CAS  Google Scholar 

  48. Stamp, N., Out of the quagmire of plant defense hypotheses, Q. Rev. Biol., 2003, vol. 78, no. 1, pp. 23–55.

    Article  PubMed  Google Scholar 

  49. Vasil’ev, S.N., Roshchin, V.I., and Artemkina, N.A., The composition of the water-soluble fraction of extractive substances of wood greens of Picea abies (L.) Karst, Rastit. Resur., 1999a, vol. 35, no. 2, pp. 53–59.

    Google Scholar 

  50. Vasil’ev, S.N., Roshchin, V.I., and Artemkina, N.A., Phenolic extractive substances from species of the genus Picea A. Dietr, Rastit. Resur., 1999b, vol. 35, no. 2, pp. 15–31.

    Google Scholar 

  51. Vasil’ev, S.N., Kushnikova, E.A., and Artemkina, N.A., The dynamics of the content of extractive substances in wood green of Picea abies (L.) Karst, Rastit. Resur., 2001, vol. 37, no. 1, pp. 49–60.

    Google Scholar 

  52. Wam, H.K., Stolter, C., and Nybakken, L., Compositional changes in foliage phenolics with plant age, a natural experiment in boreal forests, J. Chem. Ecol., 2017, vol. 43, no. 9, pp. 920–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaprometov, M.N., Fenol’nye soedineniya: rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds: Distribution, Metabolism, and Functions in the Plants), Moscow: Nauka, 1993.

  54. Zhang, D., Hui, D., Luo, Y., and Zhou, G., Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol., 2008, vol. 1, no. 2, pp. 85–93.

    Article  Google Scholar 

Download references

Funding

This study was held within the framework of the program of the Presidium of the Russian Academy of Sciences (0110-2018-0005) and the projects of state assignment to the Kola Science Center, Russian Academy of Sciences (0226-2018-0111), and Center for Forest Ecology and Productivity, Russian Academy of Sciences (AAAA-A18-118052400130-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Artemkina.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest

Statement on the welfare of animals

This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemkina, N.A., Orlova, M.A. & Lukina, N.V. Spatial Variation in the Concentration of Phenolic Compounds and Nutritional Elements in the Needles of Spruce in Northern Taiga Forests. Contemp. Probl. Ecol. 12, 769–779 (2019). https://doi.org/10.1134/S1995425519070023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425519070023

Keywords:

Navigation