Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 5, pp 449–457 | Cite as

Assessment of Anthropogenic Influence on Antarctic Mycobiota in Areas of Russian Polar Stations

  • I. Yu. Kirtsideli
  • D. Yu. Vlasov
  • Yu. K. Novozhilov
  • E. V. Abakumov
  • E. P. Barantsevich
Article

Abstract

This article presents the results of microscopic fungi complexes in the areas of five Russian polar stations in East Antarctica and the Subantarctic. A total of 104 microfungal species have been identified. Seventyseven fungal species have been detected in samples of soils and anthropogenic materials from polar stations of East Antarctica (Progress, Mirny, Molodezhnaya, and Druzhnaya 4) using mycological methods while, in the Bellingshausen station (Subantarctic), we have isolated 87 micromycete species. The number of fungi in soils varies from individual propagules in control soils to 94000 per 1 g of soil in contaminated areas. The largest number of species is represented by the genus Penicillium (26 species). Fungal species that form the core of mycobiota in most of the studied habitats have been identified. For soils of East Antarctica, it is formed by species of the genera Aureobasidium, Cadophora, Pseudogymnoascus (Geomyces), Thelebolus, and Phoma. Significant differences are established between the mycobiota of East Antarctica and that of the Subantarctic. At the same time, a general trend towards an increase in fungal species diversity and number in the areas of polar stations compared to the control (clean) sites for all studied areas is recorded. These data indicate that a significant part of micromycetes is introduced into the Antarctic by humans (anthropogenic invasion).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abakumov, E. and Mukhametova, N., Microbial biomass and basal respiration of selected Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations, Solid Earth, 2014, vol. 5, no. 2, pp. 705–712.CrossRefGoogle Scholar
  2. Abakumov, E.V., Lodygin, E.D., Gabov, D.A., and Krylenkov, V.A., The content of polycyclic aromatic hydrocarbons in Antarctic soils by example of Russian polar stations, Gig. Sanit., 2014, vol. 93, no. 1, pp. 30–35.Google Scholar
  3. Aislabie, J.M., Balks, M.R., Foght, J.M., and Waterhouse, E.J., Hydrocarbon spills on Antarctic soils: effects and management, Environ. Sci. Technol., 2004, vol. 38, pp. 1265–1274.CrossRefPubMedGoogle Scholar
  4. Aislabie, J., Saul, D.J., and Foght, J.M., Bioremediation of hydrocarbon-contaminated polar soils, Extremophiles, 2006, vol. 10, pp. 171–179.CrossRefPubMedGoogle Scholar
  5. Aislabie, J.M., Jordan, S., and Barker, G.M., Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica, Geoderma, 2008, vol. 144, pp. 9–20.CrossRefGoogle Scholar
  6. Amaro, E., Padeiro, A., de Ferro, A.M., Mota, A.M., Leppe, M., Verkulich, S., Hughes, K.A., Peter, H., and Canário, J., Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic, Mar. Pollut. Bull., 2015, vol. 97, nos. 1–2, pp. 523–527.CrossRefPubMedGoogle Scholar
  7. Arenz, B.E., Held, B.W., Jurgens, J.A., Farrell, R.L., and Blanchette, R.A., Fungal diversity in soils and historic wood from the Ross Sea region of Antarctica, Soil Biol Biochem., 2006, vol. 38, pp. 3057–3064.CrossRefGoogle Scholar
  8. Arenz, B.E., Held, B.W., Jurgens, J.A., and Blanchette, R.A., Fungal colonization of exotic substrates in Antarctica, Fungal Diversity, 2011, vol. 49, no. 1, pp. 13–22.CrossRefGoogle Scholar
  9. Bargagli, R., Environmental contamination in Antarctic ecosystems, Sci. Total Environ., 2008, vol. 400, nos. 1–3, pp. 212–226.CrossRefPubMedGoogle Scholar
  10. Beznosikov, V.A. and Lodygin, E.D., Ecological-geochemical assessment of hydrocarbons in soils of Northeastern European Russia, Eurasian Soil Sci., 2010, vol. 43, no. 5, pp. 550–555.CrossRefGoogle Scholar
  11. Cáceres, M.D. and Legendre, P., Associations between species and groups of sites: indices and statistical inference, Ecology, 2009, vol. 90, no. 12. p. 3566–3574.CrossRefPubMedGoogle Scholar
  12. Claridge, G.G.C., Campbell, I.B., Powell, H.K.J., Amin, Z.H. and Balks, M.R., Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica, Antarct. Sci., 1995, vol. 7, no. 1, pp. 9–14.CrossRefGoogle Scholar
  13. Colwell, R.K., Chao, A., Gotelli, N.J., Lin, S.Y., Mao, C.X., Chazdon, R.L., and Longino, J.T., Models and estimators linking individual-based and sample based rarefaction, extrapolation and comparison of assemblages, J. Plant Ecol., 2012, vol. 5, no. 1, pp. 3–21.CrossRefGoogle Scholar
  14. Colwell, R.K., EstimateS 9.10. User’s Guide, 2014. http://viceroy.eeb.uconn.edu/EstimateS. Google Scholar
  15. Coulon, F., Pelletier, E., St. Louis, R., Gourhant, L., and Delille, D., Degradation of petroleum hydrocarbons in two sub-antarctic soils: influence of an oleophilic fertilizer, Environ. Toxicol. Chem., 2004, vol. 23, pp. 1893–1901.CrossRefPubMedGoogle Scholar
  16. Duncan, S.M., Farrell, R.L., Jordan, N., Jurgens, J.A., and Blanchette, R.A., Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctic, Polar Sci., 2010, vol. 4, no. 2, pp. 275–283CrossRefGoogle Scholar
  17. Hsiao, C.R., Huang, L., Bouchara, J.P., Barton, R., Li, H.C., and Chang, T.C., Identification of medically important molds by an oligonucleotide array, J. Clin. Microbiol., 2005, vol. 43, no. 8, pp. 3760–3768.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jesus, H., Peixoto, R., and Rosado, A., Bioremediation in Antarctic soils, J. Petrol. Environ. Biotechnol., 2015, vol. 6, pp. 248–260.CrossRefGoogle Scholar
  19. Kirtsideli, I.Yu., Soil micromycetes of Arctic tundra of Taimyr coast of the Kara Sea, Mikol. Fitopatol., 1999, vol. 33, no. 1, pp. 19–24.Google Scholar
  20. Kirtsideli, I.Yu., Vlasov, D.Yu., Abakumov, E.V., and Gilichinskii, D.A., Diversity and enzymatic activity of micromycetes from Antarctic soils, Mikol. Fitopatol., 2010, vol. 44, no. 5, pp. 387–397.Google Scholar
  21. Kirtsideli, I.Yu., Vlasov, D.Yu., Barantsevich, E.P., Krylenkov, V.A., and Sokolov, V.T., Complexes of microfungi in soils of the polar Izvestiy TSIK Island (Kara Sea), Mikol. Fitopatol., 2014, vol. 48, no. 6, pp. 365–371.Google Scholar
  22. Kirtsideli, I.Yu., Teshebaev, Sh.B., Vlasov, D.Yu., Novozhilov, Yu.K., Abakumov, E.V., Barantsevich, E.P., Krylenkov, V.A., and Zelenskaya, M.S., Dynamics of microbial communities in primary soils and grounds in the area of Mirnyi Antarctic Station affected by anthropogenic load, Gig. Sanit., 2017, vol. 96, no. 10, pp. 949–955.Google Scholar
  23. Kurtzman, C.P. and Robnett, C.J., Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences, Antonie Leeuwenhoek, 1998, vol. 73, no. 4, pp. 331–371CrossRefPubMedGoogle Scholar
  24. Li, H.C., Bouchara, J.P., Hsu, M.M., Barton, R., and Chang, T.C., Identification of dermatophytes by an oligonucleotide array, J Clin. Microbiol., 2007, vol. 45, no. 10, pp. 3160–3166.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Magurran, A.E., Measuring Biological Diversity, Oxford: Blackwell, 2004.Google Scholar
  26. Martins, C.C., Bícego, M.C., Rose, N.L., Taniguchi, S., Lourenço, R.A., and Figueira, R.C., Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroid carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica, Environ. Pollut., 2010, vol. 158, no. 1, pp. 192–200.CrossRefPubMedGoogle Scholar
  27. Osyczka, P., Mleczko, P., Karasinki, D., and Chlebicki, A., Timber transported to Antarctica: a potential and undesirable carrier for alien fungi and insects, Biol. Invasions, 2012, vol. 14, pp. 15–20.CrossRefGoogle Scholar
  28. Santos, I.R., Silva-Filho, E.V., Schaefer, C.E.G.R., Albuquerque-Filho, M.R., and Campos, L.S, Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island, Mar. Pollut. Bull., 2005, vol. 50, no. 2, pp. 185–194.CrossRefPubMedGoogle Scholar
  29. Shitikov, V.K., Zinchenko, T.D., and Rozenberg, G.S., Makroelkologiya rechnykh soobshchestv: kontseptsii, metody, modeli (Macroecology of River Communities: Concepts, Methods, and Models), Tolyatti, 2011.Google Scholar
  30. Stephenson, S.L., Kalyanasundaram, I., and Lakhanpal, T.N., A comparative biogeographical study of myxomycetes in the mid-Appalachians of eastern North America and two regions of India, J. Biogeogr., 1993, vol. 20, pp. 645–657.CrossRefGoogle Scholar
  31. Vlasov, D.Yu., Zelenskaya, M.S., Kirtsideli, I.Yu., Abakumov, E.V., Krylenkov, V.A., and Lukin, V.V., Fungi on natural and anthropogenic substrates in Western Antarctic, Mikol. Fitopatol., 2012, vol. 46, no. 1, pp. 20–26.Google Scholar
  32. Vodyanitskii, Yu.N., Tyazhelye metally i metalloidy v pochvakh (Heavy Metals and Metalloids in Soils), Moscow: Pochv. Inst. im. V.V. Dokuchaeva, 2008.Google Scholar
  33. Waterhouse, E.J., Ross Sea Region 2001: A State of the Environment Report for the Ross Sea Region of Antarctica, Christchurch: N. Z. Antarct. Inst., 2001.Google Scholar
  34. Yergeau, E., Arbour, M., Brousseau, R., Juck, D., and Lawrence, J.R., Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments, Appl. Environ. Microbiol., 2009, vol. 75, pp. 6258–6267.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zvyagintsev, D.V., Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Moscow: Mosk. Gos. Univ., 1991.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. Yu. Kirtsideli
    • 1
  • D. Yu. Vlasov
    • 1
    • 2
  • Yu. K. Novozhilov
    • 1
  • E. V. Abakumov
    • 2
  • E. P. Barantsevich
    • 3
  1. 1.Komarov Botanical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg State UniversitySt. PetersburgRussia
  3. 3.Almazov Northwestern Federal Medical Research Center of the Russian Federation Ministry of HealthSt. PetersburgRussia

Personalised recommendations