Skip to main content
Log in

Microscopic Fungi of White Sea Sediments

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The micromycete complex population size and taxonomic structure is determined for sediments (bottom soils) of the White Sea; species actively functioning in the littoral zone and at depths of 10–30 m are identified. The bottom-soil fungi population is pretty low (hundreds to several thousand colony-forming units (CFUs) per 1 g), while the species diversity is quite rich. In total, 70 species are identified; 90% of those are Ascomycota anamorphs (Capnodiales, Eurotiales, Hypocreales, Pleosporales, Saccharomycetales, and Incertae sedis), Zygomycota (Mucoromycota) (Mucorales and Umbelopsidales orders) constituted (8%), and the share of Basidiomycota (Agaricales order) is 2%. The actively functioning bottom-soil fungi are identified on the basis of their ability to develop on organic substrates (starch, cellulose, chitin, and pieces of laminaria thallus) and grow on seawater media at low temperatures and varying oxygen levels, i.e., under conditions similar to those observed in the studied ecotope. This fungi group includes some 20 species: Paradendryphiella salina, Acremonium tubakii, A. potronii, Pseudeurotium hygrophilum, Pseudogymnoascus pannorum, Emericellopsis sphaerospora, Oidiodendron periconioides, Parengyodontium album, Lecanicillium muscarium, and representatives of genera Tolypocladium and Sarocladium. These species are typical for marine and cold habitats; some of them are well-known chitinolytics and associates of insects and algae, and many of them are able to grow in anaerobic conditions. For some of the species (Aspergillus brasiliensis, A. sydowii, Cladosporium cladosporioides, Emericellopsis sphaerospora, Oidiodendron periconioides, Pseudeurotium hygrophilum, Tolypocladium cylindrosporum, T. tundrense, Umbelopsis vinacea, Penicillium spp., and Talaromyces spp.), this ability was discovered for the first time. Further studies are required to obtain detailed ecophysiological descriptions of marine isolates of species actively functioning in the bottom soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agatova, A.O., Lapina, N.M., and Torgunova, N.I., Organic matter of the White Sea, Materialy V Vserossiiskogo simpoziuma s mezhdunarodnym uchastiem “Organicheskoe veshchestvo i biogennye elementy vo vnutrennikh vodoemakh” (Proc. V All-Russ. Symp. with Int. Participation “Organic Matter and Biogenic Elements in Inland Reservoirs”), Petrozavodsk: Karel. Nauch. Tsentr, Ross. Akad. Nauk, 2012, pp. 271–273.

    Google Scholar 

  • Andreakis, N., Høj, L., Kearns, P., Hall, M.R., Ericson, G., Cobb, R.E., et al., Diversity of marine-derived fungal cultures exposed by DNA barcodes: the algorithm matters, PLoS One, 2015, vol. 10, no. 8, p. e0136130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arfi, Y., Marchand, C., Wartel, M., and Record, E., Fungal diversity in anoxic-sulfidic sediments in a mangrove soil, Fungal Ecol., 2012, vol. 5, no. 2, pp. 282–285.

    Article  Google Scholar 

  • Artemchuk, N.Ya., Mikroflora morei SSSR (Microflora of the Seas of Soviet Union), Moscow: Nauka, 1981.

    Google Scholar 

  • Besitulo, A., Moslem, M.A., and Hyde, K.D., Occurrence and distribution of fungi in a mangrove forest on Siargao Island, Philippines, Bot. Mar., 2010, vol. 53, no. 6, pp. 535–543.

    Google Scholar 

  • Bilanenko, E.N. and Grum-Grzhimaylo, O.A., The comparative analysis of the cultured micromycetes in oligotrophic peatlands of natural biosphere reservations located in the northern and central parts of Russia, Nat. Conserv. Res., 2016, vol. 1, no. 2, pp. 90–95.

    Article  Google Scholar 

  • Bissett, J., Notes on Tolypocladium and related genera, Can. J. Bot., 1983, vol. 61, no. 5, pp. 1311–1329.

    Article  Google Scholar 

  • Bubnova, E.N., Fungi in sediments of the Kandalaksha Bay (White Sea, NW Russia), Mikol. Fitopatol., 2009, vol. 43, no. 4, pp. 284–290.

    Google Scholar 

  • Bubnova, E.N. and Kireev, Ya.V., Fungal communities associated with brown seaweeds Fucus in the Kandalaksha Bay (White Sea, NW Russia), Mikol. Fitopatol., 2009, vol. 43, no. 5, pp. 20–29.

    Google Scholar 

  • Bubnova, E.N. and Konovalova, O.P., Ecophysiological features of fungi idolated from bottom sediments of the Chukchi Sea, in Bioraznoobrazie i ekologiya gribov i gribopodobnykh organizmov severnoi Evrazii (Biological Diversity and Ecology of Fungi and Fungi-Like Species in Northern Eurasia), Yekaterinburg, 2015, pp. 38–40.

    Google Scholar 

  • Bugni, T.S. and Ireland, C.M., Marine-derived fungi: a chemically and biologically diverse group of microorganisms, Nat. Prod. Rep., 2004. 21, pp. 143–163.

    Article  PubMed  CAS  Google Scholar 

  • Crous, P.W., Braun, U., Schubert, K., and Groenewald, J.Z., The genus Cladosporium and similar dematiaceous hyphomycetes, Stud. Mycol., 2007, vol. 58.

  • Damare, S., Raghukumar, C., and Raghukumar, S., Fungi in deep-sea sediments of the Central Indian Basin, Deep Sea Res., Part I, 2006, vol. 53, no. 1, pp. 14–27.

    Article  Google Scholar 

  • Dobrovol’skii, A.D. and Zalogin, B.S., Morya SSSR. Uchebnoe posobie (The Seas of Soviet Union: Manual), Moscow: Mosk. Gos. Univ., 1982.

    Google Scholar 

  • Domsch, K.H., Gams, W., and Anderson, T.H., Compendium of Soil Fungi, Eching: IHW-Verlag, 2007, 2nd ed.

    Google Scholar 

  • Gams, W., Cephalosporium-Artige Schimmelpilze (Hyphomycetes), Stuttgart: Gustav Fischer Verlag, 1971.

    Google Scholar 

  • Gnavi, G., Garzoli, L., Poli, A., Prigione, V., Burgaud, G., and Varese, G.C., The culturable mycobiota of Flabellia petiolata: first survey of marine fungi associated to a Mediterranean green alga, PLoS One, 2017, vol. 12, no. 4, p. e0175941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golovchenko, A.V., Kurakov, A.V., Semenova, T.A., and Zvyagintsev, D.G., Abundance, diversity, viability, and factorial ecology of fungi in peatbogs, Eurasian Soil Sci., 2013, vol. 46, no. 1, pp. 74–90.

    Article  Google Scholar 

  • Grum-Grzhimaylo, O.A., Debets, A.J.M., and Bilanenko E.N., The diversity of microfungi in peatlands originated from the White Sea, Mycologia, 2016, vol. 108, no. 2, pp. 233–254.

    Article  PubMed  Google Scholar 

  • Grum-Grzhimaylo, A.A., Georgieva, M.L., Debets, A.J.M., and Bilanenko, E.N., Are alkalotolerant fungi of the Emericellopsis lineage (Bionectriaceae) of marine origin? IMA Fungus, 2013, vol. 4, no. 2, pp. 213–228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Index Fungorum, the global fungal nomenclature. http://www.indexfungorum.org/names/names.asp.

  • Jones, E.B.G., Sakayaroj, J., Suetrong, S., Somrithipol, S., and Pang, K.L., Classification of marine Ascomycota, anamorphic taxa and Basidiomycota, Fungal Diversity, 2009, vol. 35, no. 1, p. 187.

    Google Scholar 

  • Khudyakova, Yu.V., Pivkin, M.V., Kuznetsova, T.A., and Svetashev, V.I., Fungi in sediments of the sea of Japan and their biologically active metabolites, Microbiology (Moscow), 2000, vol. 69, no. 5, pp. 608–611.

    Article  CAS  Google Scholar 

  • Kirtsideli, I.Yu., Soil micromycetes of Khibin mountain tundra (Kola Peninsula), Mikol. Fitopatol., 1999, vol. 33, no. 6, pp. 386–391.

    Google Scholar 

  • Klich, M.A., Identification of Common Aspergillus Species, Utrecht: Centraalbureau voor Schimmelcultures, 2002.

    Google Scholar 

  • Kochkina, G.A., Ivanushkina, N.E., Akimov, V.N., Ozerskaya, S.M., and Gilichinskii, D.A., Halo-and psychrotolerant Geomyces fungi from arctic cryopegs and marine deposits, Microbiology (Moscow), 2007, vol. 76, no. 1, pp. 31–38.

    Article  CAS  Google Scholar 

  • Kohlmeyer, J. and Kohlmeyer, E., Marine Mycology—The Higher Fungi, New York: Academic, 1979.

    Google Scholar 

  • Kurakov, A.V., Lavrent’ev, R.B., Nechitailo, T.Yu., Golyshin, P.N., and Zvyagintsev, D.G., Diversity of facultatively anaerobic microscopic mycelial fungi in soils, Microbiology (Moscow), 2008, vol. 77, no. 1, pp. 90–98.

    Article  CAS  Google Scholar 

  • Kurakov, A.V., Khidirov, K.S., Sadykova, V.S., and Zvyagintsev, D.G., Anaerobic growth ability and alcohol fermentation activity of microscopic fungi, Appl. Biochem. Microbiol., 2011, vol. 47, no. 2, pp. 169–175.

    Article  CAS  Google Scholar 

  • Medvedev, V.S., Nevesskii, E.N., Govberg, L.I., Malyasova, E.S., Dzhinoridze, R.I., and Kirienko, E.A., The structure and stratigraphic division of bottom sediments of the White Sea, in Severnyi Ledovityi okean i ego poberezh’e v kainozoe (The Arctic Ocean and Its Coast in Cainozoe), Leningrad, 1970, pp. 253–267.

    Google Scholar 

  • Morozkina, E.V. and Kurakov, A.V., Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: a review, Appl. Biochem. Microbiol., 2007, vol. 43, no. 5, pp. 544–549.

    Article  CAS  Google Scholar 

  • Pivkin, M.V., Kuznetsova, T.A., and Sova, V.V., Morskie griby i ikh vtorichnye metabolity (Marine Fungi and Their Secondary Metabolites), Vladivostok: Dal’nauka, 2006.

    Google Scholar 

  • Raghukumar, S., Fungi in Coastal and Oceanic Marine Ecosystems. Marine Fungi, New York: Springer-Verlag, 2017.

    Book  Google Scholar 

  • Rice, A.V. and Currah, R.S., Oidiodendron: A survey of the named species and related anamorphs of Myxotrichum, Stud. Mycol., 2005, vol. 53, pp. 83–120.

    Article  Google Scholar 

  • Rogers, S.O. and Bendich, A.J., Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues, Plant Mol. Biol., 1985, vol. 5, no. 2, pp. 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, K.A. and Gams, W., The genera of Hyphomycetes—2011 update, Persoonia: Mol. Phylogeny Evol. Fungi, 2011, vol. 27, p. 119.

    Article  CAS  Google Scholar 

  • White, T.J., Bruns, T., Lee, S.J.W.T., and Taylor, J.W., Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in PCR Protocols: A Guide to Methods and Applications, Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J., Eds., London: Academic, 1990, pp. 315–322.

    Google Scholar 

  • Zalar, P. and Gunde-Cimerman, N., Cold-adapted yeasts in Arctic habitats, in Cold-Adapted Yeasts Biodiversity, Berlin: Springer-Verlag, 2014, pp. 49–74.

    Chapter  Google Scholar 

  • Zare, R. and Gams, W., A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov., Nova Hedwigia, 2001, vol. 73, nos. 1–2, pp. 1–50.

    Google Scholar 

  • Zuccaro, A., Schoch, C.L., Spatafora, J.W., Kohlmeyer, J., Draeger, S., and Mitchell, J.I., Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus, Appl. Environ. Microbiol., 2008, vol. 74, pp. 931–941. http://data.oceaninfo.info/atlas/Balt/3_watertemp_stats_table_8621569TWMR.html.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kurakov.

Additional information

Original Russian Text © A.I. Khusnullina, E.N. Bilanenko, A.V. Kurakov, 2018, published in Sibirskii Ekologicheskii Zhurnal, 2018, No. 5, pp. 584–598.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khusnullina, A.I., Bilanenko, E.N. & Kurakov, A.V. Microscopic Fungi of White Sea Sediments. Contemp. Probl. Ecol. 11, 503–513 (2018). https://doi.org/10.1134/S1995425518050062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425518050062

Keywords

Navigation