Contemporary Problems of Ecology

, Volume 11, Issue 5, pp 484–493 | Cite as

Change in the Structure and Productivity of the Biota of Agaricoid Basidiomycetes According to the Results of Long-Term Monitoring in Pine Forests of Perm Oblast (Southern Taiga Subzone)

  • V. S. BotalovEmail author
  • L. G. Perevedentseva
  • A. S. Shishigin


Results of 40-year monitoring of the agaricoid biota in four types of pine forests on Perm oblast, the southern taiga subzone, are presented. We have found that the species number of fungi in pine forests varies from 80 (sphagnum pine forest) to 194 (lichen pine forest). We have found changes in species composition and an increase in species diversity in each period of monitoring. We analyze the ecological and trophic structure and define species that are dominant in regards to the basidiome number and biomass. Despite the changes in species composition, the ecological and trophic group ratio in each forest type remains almost the same. One common feature is that mycorrhizal fungi prevail in pine forests in regards to species number (55.5–61.2% of all species in the cenosis), as well as yield (52% of all basidiomes and 94% of their total biomass). We study the relation between species diversity and productivity of microbiota with the main climatic factors. We have found that July rainfall is favorable for the fruit bearing of the agarics in a pine forest with moderate humidity in August (rs = 0.73). In swampy cenoses, June rainfall, on the contrary, has a negative impact (rs = −0.70).


agaricoid basidiomycetes climate monitoring pine forests fungal ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alday, J.G., Martínez de Aragón, J., de-Miguel, S., and Bonet, J.A., Mushroom biomass and diversity are driven by different spatio-temporal scales along Mediterranean elevation gradients, Sci. Rep., 2017, vol. 7, no. 45824, pp. 1–11.Google Scholar
  2. Avis, P.G., Gaswick, W.C., Tonkovich, G.S., and Leacock, P.R., Monitoring fungi in ecological restorations of coastal Indiana, U.S.A., Restor. Ecol., 2017, vol. 25, no. 1, pp. 92–100.CrossRefGoogle Scholar
  3. Bochus, G., and Babos, M., Coenology of terricolous macroscopic fungi of deciduous forests. Contributions to our knowledge of their behavior in Hungary, Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr., 1960, vol. 80, no. 1. pp. 1–100.Google Scholar
  4. Burova, L.G., Ekologiya gribov makromitsetov (Ecology of Macromycetes), Moscow: Nauka, 1986.Google Scholar
  5. Funga Nordica, Knudsen, H. and Vesterholt, J., Eds., Copenhagen: Nordsvamp, 2012, vol. 1, 2.Google Scholar
  6. Gange, A.C., Heegaard, E., Boddy, L., Andrew, C., Kirk, P., Halvorsen, R., Kuyper, T. W., Bässler, C., Diez, J., Heilman-Clausen, J., Høiland, K., Büntgen, U., and Kauserud, H., Trait-dependent distributional shifts in fruiting of common British fungi, Ecography, 2018, vol. 41, no. 1, pp. 51–61.CrossRefGoogle Scholar
  7. Ivanov, A.I., Fructification of Agaricomycetes in nature communities of Penza oblast related to the cycles of solar activities and weather conditions, Mikol. Fitopatol., 2016, vol. 50, no. 4, pp. 219–229.Google Scholar
  8. Karavani, A., De Cáceres, M., Martínez de Aragón, J., Bonet, J.A., and de-Miguel, S., Effect of climatic and soil moisture conditions on mushroom productivity and related ecosystem services in Mediterranean pine stands facing climate change, Agric. For. Meteorol., 2018, vol. 248, pp. 432–440.CrossRefGoogle Scholar
  9. Kovalenko, A.E., Ecological reviews of fungi from orders Polyporales s. str., Boletales, Agaricales s. str., and Russulales in mountain forests of the Central part of Northwestern Caucasus, Mikol. Fitopatol., 1980, vol. 14, no. 4, pp. 300–314.Google Scholar
  10. Lagana, A., Salerni, E., Barluzzi, C., Perini, C., and De Dominicis, V., Macrofungi as long-term indicators of forest health and management in central Italy, Cryptogamie Mycol., 2002, vol. 23, no. 1, pp. 39–50.Google Scholar
  11. Leont’ev, D.V., Floristicheskii analiz v mikologii (Floristic Analysis in Mycology), Kharkov: Ranok-NT, 2008.Google Scholar
  12. Meteorologicheskii ezhemesyachnik, 1975–1977 (Meteorological Monthly Bulletin, 1975–1977), Sverdlovsk: Ural. Uprav. Gidrometeorol. Monit. Okruzh. Sredy, 1994–1996, no. 9.Google Scholar
  13. Moser, M., Die Röhrlinge und Blätterpilze (Polyporales, Boletales, Agaricales, Russulales). Kleine Kryptogamenflora, Vol. IIb/2: Basidiomyceten, Stuttgart: Gustav Fischer Verlag, 1983.Google Scholar
  14. Nezdoiminogo, E.L., Opredelitel’ gribov Rossii. Poryadok Agarikovye. Vyp. 1. Semeistvo Pautinnikovye (Guide for Identification of Fungi of Russia, Order Agaricales, No. 1: Family Cortinariaceae), St. Petersburg: Nauka, 1996.Google Scholar
  15. Ovesnov, S.A., Botanical-geographic zonation of Perm oblast, Vestn. Prmsk. Univ., Biol., 2000, no. 2, pp. 13–21.Google Scholar
  16. Perevedentseva, L.G., Mycorrhizal fungi and mycosymbiotrophism of plants in the pine forests of the Central Kama region, in Mikoriza i drugie formy konsortativnykh svyazei v prirode (Mycorrhiza and Other Types of Consortium Relations in Nature), Perm, 1985, pp. 59–66Google Scholar
  17. Perevedentseva, L.G., Biota and ecology of agaricoid basidiomycetes of Perm oblast, Extended Abstract of Doctoral (Biol.) Dissertation, Moscow, 1999.Google Scholar
  18. Perevedentseva, L.G. and Botalov, V.S., Monitoring of species composition of agaricoid basidiomycetes in some types of pine forests of Perm krai (south taiga subzone), Materialy 9-oi mezhdunarodnoi konferentsii “Problemy lesnoi fitopatologii i mikologii,” Minsk, 19–24 oktyabrya 2015 g. (Proc. Ninth Int. Conf. “Problems of Forest Phytopathology and Mycology,” Minsk, October 19–24, 2015), Minsk, 2015, pp. 163–166.Google Scholar
  19. Rysin, L.P. and Savel’eva, L.I., Sosnovye lesa Rossii (Pine Forests of Russia), Moscow: KMK, 2008.Google Scholar
  20. Shklyaev, V.A. and Shklyaeva, L.S., Climate resources of Ural Kama region, Geogr. Vestn., 2006, no. 2, pp. 97–100.Google Scholar
  21. Shmidt, V.M., Matematicheskie metody v botanike (Mathematical Methods in Botany), Leningrad: Nauka, 1973.Google Scholar
  22. Shubin, V.I., Makromitsety lesnykh fitotsenozov taezhnoi zony i ikh ispol’zovanie (Macromycetes of Forest Phytocenosises in Taiga Zone and Their Use), Leningrad: Nauka, 1990.Google Scholar
  23. Smith, S.E. and Reed, D.J., Mycorrhizal Symbiosis, London: Academic, 1997.Google Scholar
  24. Stolyarskaya, M.V. and Kovalenko, A.E., Griby Nizhnesvirskogo zapovednika. Vyp 1. Makromitsety: annotirovannye spiski vidov (Fungi of Nizhne-Svirskiy Nature Reserve, No. 1: Macromycetes: Annotated Lists of Species), St. Petersburg: Bot. Inst., Ross. Akad. Nauk, 1996.Google Scholar
  25. Straatsma, G., Ayer, F., and Egli, S., Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot, Mycol. Res., 2001, vol. 105, no. 5, pp. 515–523.CrossRefGoogle Scholar
  26. Sukachev, V.N. and Zonn, E.V., Metodicheskie ukazaniya k izucheniyu tipov lesov (Methodological Recommendations for Analysis of Forest Types), Moscow: Akad. Nauk SSSR, 1961, 2nd ed.Google Scholar
  27. Trukhacheva, N.V., Matematicheskaya statistika v medicobiologicheksikh issledovaniyakh s primeneniem paketa Statistica (Mathematical Statistics in Medical-Biological Studies Using Statistica Software), Moscow: GEOTAR-Media, 2012.Google Scholar
  28. Weather and climate. December 1, 2012.
  29. Wieder, R.K. and Vitt, D.H., Boreal Peatland Ecosystems, Berlin: Springer-Verlag, 2006.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. S. Botalov
    • 1
    Email author
  • L. G. Perevedentseva
    • 2
  • A. S. Shishigin
    • 2
  1. 1.Perm State Agrotechnological UniversityPermRussia
  2. 2.Perm State UniversityPermRussia

Personalised recommendations