Contemporary Problems of Ecology

, Volume 11, Issue 2, pp 207–214 | Cite as

Fatty Acid Composition of Lipids in Picea obovata Needles in the Spring Vegetation Period

  • M. V. Ivanova
  • S. P. Makarenko
  • G. G. Suvorova


The dynamics of the fatty acid (FA) composition of total lipids in needles of Siberian spruce (Picea obovata L.) during the first half (March–July) of the 2010 vegetation season has been studied. Three maxima of the unsaturated fatty acid (UFA) content with increased levels of α-linolenic acid are revealed in the postwinter (March 10–April 6), spring (April 20–May 18), and summer (June 1–July 20) periods. During postwinter and spring vegetation, the UFA increase is accompanied by an increase in the oleic and linoleic desaturation ratios. The spring peak of the 18:3ω3 content coincides with the spring peak in chlorophylls in the light-harvesting complexes of photosynthetic units and with the onset of the net CO2 assimilation. The summer peak is characterized by the level of chlorophylls, which is the highest over the entire monitoring period. The possible ways that the FA is involved in the rearrangement of the structural and functional organization of the photosynthetic apparatus of a coniferous plant are discussed.


Picea obovata chlorophyll desaturase fatty acids 



acyl-carrier protein


fatty acid


fatty acid methyl ester


linoleic desaturation ratio


light-harvesting complexes


oleic desaturation ratio


polyunsaturated fatty acid


unsaturated fatty acid


Δ5-unsaturated polymethylene-interrupted fatty acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreu, V., Collados, R., Testillano, P.S., Risueno, M.D., Picorel, R., and Alfonso, M., In situ molecular identification of the acid desaturase FAD7 from soybean: evidence of thylakoid membrane localization, Plant Physiol., 2007, vol. 145, pp. 1336–1344.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Antonov, V.F., Lipidy i ionnaya pronitsaemost’ membran (Lipids and Ion Permeability of Membranes), Moscow: Nauka, 1982.Google Scholar
  3. Bligh, E.G. and Dyer, W.J., A Rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.CrossRefPubMedGoogle Scholar
  4. Cartea, M.E., Migdal, M., Galle, A.M., Pelletier, G., and Guerche, P., Comparison of sense and antisense methodologies for modifying the fatty acid composition of Arabidopsis oilseed, Plant Sci., 1998, vol. 136, pp. 181–194.CrossRefGoogle Scholar
  5. Christie, W.W., Preparation of ester derivatives of fatty acids for chromatographic analysis, in Advances in Lipid Methodology, Dundee: Two Oily Press, 1993, pp. 69–111.Google Scholar
  6. Dobson, G. and Christie, W.W., Mass spectrometry of fatty acid derivatives, Eur. J. Lipid. Sci. Technol., 2002, vol. 104, pp. 36–43.Google Scholar
  7. Ivanova, M.V. and Suvorova, G.G., Struktura i funktsiya fotosinteticheskogo apparata khvoinykh v usloviyakh uga Vostochnoi Sibiri (The Structure and Function of Photosynthetic Apparatus of Coniferous of the South of Eastern Siberia), Irkutsk: Inst. Geogr., Sib. Otd., Ross. Akad. Nauk, 2014.Google Scholar
  8. Kabayashi, K. and Wada, H., Role of lipids in chloroplast biogenesis, Subcell. Biochem., 2016, vol. 86, pp. 103–125.CrossRefGoogle Scholar
  9. Klimat Irkutska (Climate of Irkutsk), Shver, N.A. and Formanchuk, N.P., Eds., Leningrad: Gidrometeoizdat, 1981.Google Scholar
  10. Lipidnyi obmen drevesnykh rastenii v uloviyakh severa (Lipid Metabolism of Wood Plants at the North), Egorov, A.A., Ed., Petrozavodsk: Karel. Fil., Akad. Nauk SSSR, 1983.Google Scholar
  11. Los’, V.A., The structure, expression regulation, and activity of fatty acid desaturases, Usp. Biol. Khim., 2001, vol. 41, pp. 163–198.Google Scholar
  12. Makarenko, S.P., Konenkina, T.A., Putilina, T.E., Donskaya, L.I., and Muzalevskaya, O.V., The composition of fatty acids in the endosperm and embryo lipids of Pinus sibirica and P. sylvestris seeds, Russ. J. Plant Physiol., 2008, vol. 55, no. 4, pp. 480–485.CrossRefGoogle Scholar
  13. Makarenko, S.P., Konenkina, T.A., Suvorova, G.G., and Oskorbina, M.V., Seasonal changes in the fatty acid composition of Pinus sylvestris needle lipids, Russ. J. Plant Physiol., 2014, vol. 61, no. 1, pp. 119–123.CrossRefGoogle Scholar
  14. Martz, F., Kiviniemi, S., Palva, T.E., and Suitinen, M.-L., Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP syntase II (KASII) genes in the modulation of glycolipid fatty acid composition during cold acclimation in birch leaves, J. Exp. Bot., 2006, vol. 57, pp. 897–909.CrossRefPubMedGoogle Scholar
  15. Maslova, T.G. and Popova, I.A., Adaptive properties of the plant pigment systems, Photosynthetica, 1993, vol. 29, pp. 195–203.Google Scholar
  16. Mongrand, S., Badoc, A., Patouille, B., Lacomblez, C., Chavent, M., Cassagne, C., and Bessoule, J.J., Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition, Phytochemistry, 2001, vol. 58, pp. 101–115.CrossRefPubMedGoogle Scholar
  17. Novitskaya, Yu.I., Chikina, P.F., Sofronova, G.I., Gabukova, V.V., and Makarevskii, M.F., Fiziologo-biokhimicheskie osnovy rosta i adaptatsii sosny na Severe (Physiological-Biochemical Principles of Growth and Adaptation of Pine at the North), Leningrad: Nauka, 1985.Google Scholar
  18. Ohlrogge, J. and Browse, J., Lipid biosynthesis, Plant Cell, 1995, vol. 7, pp. 957–970.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Oquist, G., Seasons-induced changes in acyl lipids and fatty acids of chloroplast thylakoids of Pinus sylvestris: a correlation between the level of unsaturation of monogalactosyldiglyceride and the rate of electron transport, Plant Physiol., 1982, vol. 69, pp. 869–875.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Oskorbina, M.V., Structural functional features of photosynthetic apparatus of coniferous in Upper Cis-Baikal region, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Irkutsk: Sib. Inst. Physiol. Biochem. Plants, Sib. Branch, Russ. Acad. Sci., 2010.Google Scholar
  21. Provart, N.J., Gil, P., Chen, W., Han, B., Chang, H.-S., Wang, X., and Zhu, T., Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures, Plant Physiol., 2003, vol. 132, pp. 893–906.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ramli, U.S., Bakaer, D.S., Qunt, P.A., and Harwood, J.L., Control analysis of biosynthesis in tissue culture from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly, Biochem. J., 2007, vol. 364, pp. 393–401.CrossRefGoogle Scholar
  23. Rebrova, O.Yu., Statisticheskii analiz meditsinskikh dannykh. Primenenie paketa prikladnykh program STATISTICA (Statistical Analysis of Medical Data. Use of STATISTICA Software Package), Moscow: MediaSfera, 2002.Google Scholar
  24. Romanova, I.M., Semenova, N.V., Zhivetev, M.A., and Graskova, I.A., The composition of fatty acids of Pinus sylvestris L. of Olkha village surround forests, J. Stress Physiol. Biochem., 2015, vol. 12, pp. 42–51.Google Scholar
  25. Shanklin, J. and Cahoon, E., Desaturation and related modifications of fatty acids, Annu. Rev. Plant Physiol., Plant Mol. Biol., 1998, vol. 49, pp. 611–641.CrossRefGoogle Scholar
  26. Shcherbatyuk, A.S., Rusakova, L.V., Suvorova, G.G., and Yan’kova, L.S., Uglekislyi gazoobmen khvoinykh Predbaikal’ya (Carbon Dioxide Exchange in Coniferous of Cis-Baikal Region), Novosibirsk: Nauka, 1991.Google Scholar
  27. Shlyk, A.A., Analysis of chlorophylls and carotenoids in extracts of green leaves, in Biokhimicheskie metody v fiziologii rastenii (Biochemical Analysis in the Plant Physiology), Moscow: Nauka, 1971, pp. 154–169.Google Scholar
  28. Suvorova, G.G., Fotosintez khvoinykh rastenii v usloviyakh Sibiri (Photosynthesis of Coniferous in Siberia), Novosibirsk: Geo, 2009.Google Scholar
  29. Torres-Franklin, M.L., Repellin, A., Huynh, V.B., d’Arcy-Lameta, A., Zuily-Fodil, Y., and Pham-Thi, A.T., Omega-3 fatty acid desaturase (FAD3, FAD7, FAD8) gene expression and linolenic acid content in cowpea leaves submitted to drought and after rehydration, Environ. Exp. Bot., 2009, vol. 65, pp. 162–169.CrossRefGoogle Scholar
  30. Wang, Z. and Benning, C., Chloroplast lipid synthesis and lipid trafficking through ER-plastid membrane contact sites, Biochem. Sps. Trans., 2012, vol. 40, pp. 457–463.CrossRefGoogle Scholar
  31. Wolff, R.L. and Christie, W.W., Structure, practical sources (gymnosperm seeds), gas-chromatographic data (equivalent chain lengths), and mass spectrometric characteristics of all-cisΔ5-olefinic acids, Eur. J. Lipid. Sci. Technol., 2002, vol. 104, pp. 234–244.CrossRefGoogle Scholar
  32. Wolff, R.L., Lavialle, O., Pedrone, F., Deluc, L.G., Marpeau, A., and Aitzetmuller, K., Fatty acid compositions of Pinaceae as taxonomic markers, Lipids, 2001, vol. 36, pp. 439–451.CrossRefPubMedGoogle Scholar
  33. Zagirova, S.V., Struktura assimilyatsionnogo apparata i CO2-gazoobmen u khvoinykh (The Structure of Assimilation Apparatus and CO2 Exchange in Coniferous), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1999.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Ivanova
    • 1
  • S. P. Makarenko
    • 1
  • G. G. Suvorova
    • 1
  1. 1.Siberian Institute of Plant Physiology and Biochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations