Contemporary Problems of Ecology

, Volume 10, Issue 3, pp 230–239 | Cite as

Fatty acid composition and content in chironomid species at various life stages dominating in a saline Siberian lake

  • O. N. Makhutova
  • E. V. Borisova
  • S. P. Shulepina
  • A. A. Kolmakova
  • N. N. Sushchik
Article

Abstract

This paper studies the fatty acid (FA) composition and content of essential polyunsaturated fatty acids (PUFAs) in the biomass of larvae and adults of chironomids from the saline Shira Lake. Species of different genera significantly differ in their larvae FA composition and essential PUFA content, and they also occupy different ecological niches: Chironomus species with a low PUFA content (0.2–0.3 mg g–1 of wet weight) inhabit a deepwater zone of the lake, while Glyptotendipes barbipes species that were richer in PUFA (2.3 mg g–1 of wet weight) dwell in the littoral of the lake. The biochemical differences are likely related to different feeding spectra of these taxa and can also be explained by the phylogenetic factor. A comparison does not find differences in the PUFA content in larvae and adults in the samples of the same species G. barbipes; i.e., we do not confirm the data on an increase in the content of these acids during the metamorphosis of chironomids. Thus, the data on the PUFA content in larvae can be used in calculations of PUFA fluxes through chironomid emergence from water bodies; however, the taxonomic affiliation of the emerged chironomids should be taken into consideration due to the high variability in the PUFA content in Chironomidae species.

Keywords

fatty acids Chironomidae saline lake life stages amphibiotic insect emergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlgren, G., Vrede, T., and Goedkoop, W., Fatty acid ratios in freshwater fish, zooplankton and zoobenthos—are there specific optima? in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J., Eds., New York: Springer-Verlag, 2009, pp. 147–178.CrossRefGoogle Scholar
  2. Arts, M.T. and Kohler, C.C., Health and condition in fish: the influence of lipids on membrane competency and immune response, in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J., Eds., New York: Springer-Verlag, 2009, pp. 237–255.CrossRefGoogle Scholar
  3. Bartels, P., Cucherousset, J., Steger, K., Eklov, P., Tranvik, L.J., and Hillebrand, H., Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics, Ecology, 2012, vol. 93, pp. 1173–1182.CrossRefPubMedGoogle Scholar
  4. Bell, J.G., Ghioni, C., and Sargent, J.R., Fatty acid compositions of 10 freshwater invertebrates, which are natural food organisms of Atlantic salmon parr (Salmo salar): a comparison with commercial diets, Aquaculture, 1994, vol. 128, pp. 301–313.CrossRefGoogle Scholar
  5. Borisova, E.V., Makhutova, O.N., Gladyshev, M.I., and Sushchik, N.N., Fluxes of biomass and essential polyunsaturated fatty acids from water to land via chironomid emergence from a mountain lake, Contemp. Probl. Ecol., 2016, vol. 9, no. 4, pp. 446–457.CrossRefGoogle Scholar
  6. Degermendzhy, A.G., Zadereev, E.S., Rogozin, D.Yu., Prokopkin, I.G., Barkhatov, Y.V., Tolomeev, A.P., Khromechek, E.B., Janse, J.H., Mooij, W.M., and Gulati, R.D., Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia), Aquat. Ecol., 2010, vol. 44, pp. 619–932.CrossRefGoogle Scholar
  7. Dgebuadze, Yu.Yu. and Gladyshev, M.I., Biotic fluxes of matter and energy between aquatic and terrestrial ecosystems, Contemp. Probl. Ecol., 2016, vol. 9, no. 4, pp. 391–395.CrossRefGoogle Scholar
  8. Durnova, N.A., Ecological-morphological characteristics of larvae of Glyptotendipes Kieffer, 1913 (Diptera, Chironomidae), in Entomologicheskie i parazitologicheskie issledovaniya v Povolzh’e (Entomological and Parasitological Studies in Volga Region), Saratov: Saratov. Gos. Univ., 2001, no. 1, pp. 52–57.Google Scholar
  9. Goedkoop, W., Sonesten, L., Ahlgren, G., and Boberg, M., Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications, Can. J. Fish. Aquat. Sci., 2000, vol. 57, pp. 2267–2279.CrossRefGoogle Scholar
  10. Goedkoop, W., Sonesten, L., Markensten, H., and Ahlgren, G., Fatty acid biomarkers show dietary differences between dominant chironomid taxa in Lake Erken, Freshwater Biol., 1998, vol. 40, pp. 135–143.CrossRefGoogle Scholar
  11. Gladyshev, M.I., Arts, M.T., and Sushchik, N.N., Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA + DHA) from aquatic to terrestrial ecosystems, in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J., Eds., New York: Springer-Verlag, 2009, pp. 179–209.CrossRefGoogle Scholar
  12. Gladyshev, M.I., Kharitonov, A.Yu., Popova, O.N., Sushchik, N.N., Makhutova, O.N., and Kalacheva, G.S., Quantitative estimation of dragonfly role in transfer of essential polyunsaturated fatty acids from aquatic to terrestrial ecosystems, Dokl. Biochem. Biophys., 2011, vol. 438, pp. 141–143.CrossRefPubMedGoogle Scholar
  13. Gladyshev, M.I., Sushchik, N.N., and Makhutova, O.N., Production of EPA and DHA in aquatic ecosystems and their transfer to the land, Prostaglandins Other Lipid Mediators, 2013, vol. 107, pp. 117–126.CrossRefPubMedGoogle Scholar
  14. Gladyshev, M.I., Sushchik, N.N., Shulepina, S.P., Ageev, A.V., Dubovskaya, O.P., Kolmakova, A.A., and Kalachova, G.S., Secondary production of highly unsaturated fatty acids by zoobenthos across rivers contrasting in temperature, River Res. Appl., 2016, vol. 32, pp. 1252–1263.CrossRefGoogle Scholar
  15. Gulati, R.D. and Degermendzhy, A.G., Preface, Aquat. Ecol., 2002, vol. 36, pp. 105–106.CrossRefGoogle Scholar
  16. Gulati, R.D., Mooij, W.M., and Degermendzhy, A.G., Preface to the Siberian lakes special issue, Aquat. Ecol., 2010, vol. 44, pp. 481–483.CrossRefGoogle Scholar
  17. Happel, A., Stratton, L., Pattridge, R., Rinchard, J., and Czesny, S., Fatty-acid profiles of juvenile lake trout reflect experimental diets consisting of natural prey, Freshwater Biol., 2016, vol. 61, pp. 1466–1476.CrossRefGoogle Scholar
  18. Hart, E.A. and Lovvorn, J.R., Patterns of macroinvertebrate abundance in inland saline wetlands: a trophic analysis, Hydrobiologia, 2005, vol. 541, pp. 45–54.CrossRefGoogle Scholar
  19. Hixson, S.M., Sharma, B., Kainz, M.J., Wacker, A., and Arts, M.T., Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems, Environ. Rev., 2015, vol. 23, pp. 414–424.CrossRefGoogle Scholar
  20. Kara, T., Tellioglu, A., and Aydin, S., Fatty acid composition of Chironomidae larvae in different seasons, Asian J. Chem., 2012, vol. 24, no. 11, pp. 5309–5312.Google Scholar
  21. Kiyashko, S.I., Imbs, A.B., Narita, T., Svetashev, V.I., and Wada, E., Fatty acid composition of aquatic insect larvae Stictochironomus pictulus (Diptera: Chironomidae): evidence of feeding upon methanotrophic bacteria, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2004, vol. 139, pp. 705–711.Google Scholar
  22. Lands, W.E.M., Human life: caught in the food web, in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J., Eds., New York: Springer-Verlag, 2009, pp. 327–354.CrossRefGoogle Scholar
  23. Makhutova, O.N., Shulepina, S.P., Sharapova, T.A., Dubovskaya, O.P., Sushchik, N.N., Baturina, M.A., Pryanichnikova, E.G., Kalachova, G.S., and Gladyshev, M.I., Contents of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species, Freshwater Sci., 2016, vol. 35, no. 4, pp. 1222–1234.CrossRefGoogle Scholar
  24. Makhutova, O.N., Sushchik, N.N., Gladyshev, M.I., Ageev, A.V., Pryanichnikova, E.G., and Kalachova, G.S., Is the fatty acid composition of freshwater zoobenthic invertebrates controlled by phylogenetic or trophic factors? Lipids, 2011, vol. 46, pp. 709–721.CrossRefPubMedGoogle Scholar
  25. Marcarelli, A.M., Baxter, C.V., Mineau, M.M., and Hall, R.O., Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters, Ecology, 2011, vol. 92, pp. 1215–1225CrossRefPubMedGoogle Scholar
  26. Mater. nauchno-prakt. konf. posvyashchennoi 100-letiyu organizatsii kurorta “Ozero Shira” “Mediko-biologicheskie i ekologicheskie problemy kurortnogo kompleksa “Shira” (Proc. Sci.-Pract. Conf. Dedicated the 100 Anniversary of Ozero Shira Resort “Medical-Biological and Ecological problems of the Shira Resort Complex”), Tomsk: Tsentr. Nauchno-Tekh. Izd., 1997.Google Scholar
  27. Millan, A., Velasco, J., Gutierrez-Canovas, C., Arribas, P., Picazo, F., Sanchez-Fernandez, D., and Abellan, P., Mediterranean saline streams in southeast Spain: what do we know? J. Arid Environ., 2011, vol. 75, pp. 1352–1359.CrossRefGoogle Scholar
  28. Mustonen, A.-M., Kakela, R., Paakkonen, T., and Nieminen, P., Life stage-related differences in fatty acid composition of an obligate ectoparasite, the deer ked (Lipoptena cervi)—influence of blood meals and gen der, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2015, vol. 179, pp. 62–70.CrossRefGoogle Scholar
  29. Napolitano, G.E., Fatty acids as trophic and chemical markers in freshwater ecosystems, in Lipids in Freshwater Ecosystems, Arts, M.T. and Wainman, B.C., New York: Springer-Verlag, 1999, pp. 21–44.CrossRefGoogle Scholar
  30. Nor Aliza, A.R., Rana, R.L., Skoda, S.R., Berkebile, D.R. and Stanley, D.W., Tissue polyunsaturated fatty acids and a digestive phospholipase A2 in the primary screwworm, Cochliomyia hominivorax, Insect Biochem. Mol. Biol., 1999, vol. 29, pp. 1029–1038.CrossRefGoogle Scholar
  31. Opredelitel’ nasekomykh Evropeiskoi chasti SSSR. Tom 5. Chast’ 1. Dvukrylye, blokhi (Guide for Identification of Insects of the Soviet Union, Vol. 5, Part 1: Dipteran and Fleas), Leningrad: Nauka, 1969.Google Scholar
  32. Opredelitel’ nasekomykh Dal’nego Vostoka Rossii. Tom 6. Chast’ 1. Dvukrylye i blokhi (Guide for Identification of Insects of the Russian Far East, Vol. 6, Part 1: Dipteran and Fleas), Vladivostok: Dal’nauka, 1999.Google Scholar
  33. Pankratova, V.Ya., Lichinki i kukolki komarov p/sem. Podonominae i Tanipodinae fauny SSSR (Diptera, Chironomidae–Tendipedidae) (Larvae and Pupas of Non- Biting Midges of Subfamilies Podonominae and Tanipodinae in Fauna of Soviet Union (Diptera, Chironomidae–Tendipedidae)), Leningrad: Nauka, 1977.Google Scholar
  34. Pankratova, V.Ya., Lichinki i kukolki komarov p/sem. Chironominae fauny SSSR (Diptera, Chironomidae–Tendipedidae) (Larvae and Pupas of Non-Biting Midges of Subfamily Chironominae in Fauna of Soviet Union (Diptera, Chironomidae–Tendipedidae)), Leningrad: Nauka, 1983.Google Scholar
  35. Platonova, L.V., Bottom fauna of the Shira Lake. Message 3, Uch. Zap. Krasn. Gos. Pedagog. Inst., 1956, vol. 5, pp. 219–227.Google Scholar
  36. Stanley-Samuelson, D.W., Jurenka, R.A., Cripps, C., Blomquist, G.J. and de Renobales, M., Fatty acids in insects: composition, metabolism, and biological significance, Arch. Insect Biochem. Physiol., 1988, vol. 9, pp. 1–33.CrossRefGoogle Scholar
  37. Sushchik, N.N., Gladyshev, M.I., Moskvicheva, A.V., Makhutova, O.N., and Kalachova, G.S., Comparison of fatty acid composition in major lipid classes of the dominant benthic invertebrates of the Yenisei River, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2003, vol. 134, pp. 111–122.CrossRefGoogle Scholar
  38. Sushchik, N.N., Yurchenko, Y.A., Gladyshev, M.I., Belevich O.E., Kalacheva, G.S., and Kolmakova, A.A., Comparison of fatty acid contents and composition in major lipid classes of larvae and adults of mosquitoes (Diptera: Culicidae) from a steppe region, Insect Sci., 2013, vol. 20, pp. 585–600.CrossRefPubMedGoogle Scholar
  39. Taipale, S., Strandberg, U., Peltomaa, E., Galloway, A.W.E., Ojala, A., and Brett, M.T., Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes, Aquat. Microb. Ecol., 2013, vol. 71, pp. 165–178.CrossRefGoogle Scholar
  40. The Chironomidae: Biology and Ecology of Non-Biting Midges, Armitage, P.D., Cranston, P.S., and Pinder, L.C.V., Eds., Dordrecht: Springer-Verlag, 1995.Google Scholar
  41. Twining, C.W., Brenna, J.T., Hairston, N.G., and Flecker, A.S., Highly unsaturated fatty acids in nature: what we know and what we need to learn, Oikos, 2016a, vol. 125, pp. 749–760.CrossRefGoogle Scholar
  42. Twining, C.W., Brenna, J.T., Lawrence, P., Shipley, J.R., Tollefson, T.N., and Winkler, D.W., Omega-3 longchain polyunsaturated fatty acids support aerial insectivore performance more than food quantity, Proc. Natl. Acad. Sci. U.S.A., 2016b. doi 10.1073/pnas.1603998113Google Scholar
  43. Zinchenko, T.D., Ekologo-faunisticheskaya kharakteristika khironomid (Diptera, Chironomidae) malykh rek basseina Srednei i Nizhnei Volgi: Atlas (Ecological and Faunistic Characteristic of Chironomids (Diptera, Chironomidae) from the Small Rivers of Central and Lower Volga River Basin: Atlas), Volgograd: Kassandra, 2011.Google Scholar
  44. Zinchenko, T.D., Gladyshev, M.I., Makhutova, O.N., Sushchik, N.N., Kalachova, G.S., and Golovatyuk, L.V., Saline rivers provide arid landscapes with a considerable amount of biochemically valuable production of chironomid (Diptera) larvae, Hydrobiologia, 2014, vol. 722, no. 1, pp. 115–128.CrossRefGoogle Scholar
  45. Zivic, I., Trbovic, D., Zivic, M., Bjelanovic, K., Markovic, Z. S., Stankovic, M., and Markovic, Z., The influence of supplement feed preparation on the fatty acid composition of carp and Chironomidae larvae in a semi-intensive production system, Arch. Biol. Sci., 2013, vol. 65, no. 4, pp. 1387–1396.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. N. Makhutova
    • 1
    • 2
  • E. V. Borisova
    • 2
  • S. P. Shulepina
    • 2
  • A. A. Kolmakova
    • 1
  • N. N. Sushchik
    • 1
    • 2
  1. 1.Institute of Biophysics, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations