Skip to main content

Advertisement

Log in

Substance and energy flows formed by the emergence of amphibiotic insects across the water–air boundary on the floodplain lakes of the Volga River

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Substance flow across the water–air boundary on the floodplain Lake Holodnoe (Saratov oblast) is generally formed by the Culicomorpha (76.1%) and accounts for 0.35 g/m2 of the lake area per year. The energy flow amounts to 1.87 kcal/m2, and most of it accounts for the second half of summer and autumn. Annual removal of biogenic elements is 0.18 g/m2 for carbon, 0.04 g/m2 for nitrogen, and 0.004 g/m2 for phosphorus. The greatest contribution to flows of substance and energy is brought by large species of chironomids, as well as chaoborids and medium-sized chironomids, which produce several generations within a year and reach high abundance at a larval stage. Other floodplain lakes of the Volga River with similar biotopical features and species composition of amphibiotic insects are characterized by a quantitatively similar level of exchange processes with adjacent land ecosystems across the water–air boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alberts, J.M., Sullivan, S.M.P., and Kautza, A, Riparian swallows as integrators of landscape change in a multiuse river system: implications for aquatic-to-terrestrial transfers of contaminants, Sci. Total Environ., 2013, vols. 463–464, pp. 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, R.C., Do dragonflies migrate across the western Indian Ocean? J. Trop. Ecol., 2009, vol. 25, no. 4, pp. 347–358.

    Article  Google Scholar 

  • Banks, J.L., Li, J., and Herlihy, A.T., Influence of clear-cut logging, flow duration, and season on emergent aquatic insects in headwater streams of the Central Oregon Coast Range, J. North Am. Benthol. Soc., 2007, vol. 26, no. 4, pp. 620–632.

    Article  Google Scholar 

  • Bartrons, M., Papes, M., Diebel, M.W., Gratton, C., and Zanden, M.J., Regional-level inputs of emergent aquatic insects from water to land, Ecosystems, 2013, vol. 16, no. 7, pp. 1353–1363.

    Article  CAS  Google Scholar 

  • Baxter, C.V., Fausch, K.D., and Carl Saunders, W., Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones, Freshwater Biol., 2005, vol. 50, no. 2, pp. 201–220.

    Article  Google Scholar 

  • Bogan, M.T. and Lytle, D.A., Seasonal flow variation allows “time-sharing” by disparate aquatic insect communities in montane desert streams, Freshwater Biol., 2007, vol. 52, no. 2, pp. 290–304.

    Article  Google Scholar 

  • Bried, J.T. and Ervin, G.N., Distribution of adult Odonata among localized wetlands in east-central Mississippi, Southeast. Nat., 2005, vol. 4, no. 4, pp. 731–744.

    Article  Google Scholar 

  • Briers, R.A., Cariss, H.M., Geoghegan, R., and Gee, J.H.R., The lateral extent of the subsidy from an upland stream to riparian lycosid spiders, Ecography, 2005, vol. 28, no. 2, pp. 165–170.

    Article  Google Scholar 

  • Burdon, F.J. and Harding, J.S., The linkage between riparian predators and aquatic insects across a streamresource spectrum, Freshwater Biol., 2008, vol. 53, no. 2, pp. 330–346.

    Google Scholar 

  • Chan, E.K.W., Yu, Y.T., Zhang, Y. and Dudgeon, D., Distribution patterns of birds and insect prey in a tropical riparian forest, Biotropica, 2008, vol. 40, no. 5, pp. 623–629.

    Article  Google Scholar 

  • Chan, E.K.W., Zhan, Y., and Dudgeon, D., Substrate availability may be more important than aquatic insect abundance in the distribution of riparian orb-web spiders in the tropics, Biotropica, 2009, vol. 41, no. 2, pp. 196–201.

    Article  Google Scholar 

  • Chan, E.K.W., Zhang, Y., and Dudgeon, D., Contribution of adult aquatic insects to riparian prey availability along tropical forest streams, Mar. Freshwater Res., 2007, vol. 58, no. 8, pp. 725–732.

    Article  Google Scholar 

  • Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., and Middelburg, J.J., Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget, Ecosystems, 2007, vol. 10, no. 1, pp. 172–185.

    Article  CAS  Google Scholar 

  • Coffman, W.P., Energy flow in a woodland stream ecosystem: the taxonomic composition and phenology of the Chironomidae as determined by the collection of pupal exuviae, Arch. Hydrol., 1973, vol. 71, pp. 281–322.

    Google Scholar 

  • Cummins, K.W. and Wuycheck, J.C., Caloric equivalents for investigation in ecological energetics, Mitt. Int. Theor. Angew. Limnol., 1971, no. 18.

  • Djomina, I.V., Role of culicomorph insects (Diptera, Nematocera) in formation of the matter and energy flows through the “water-air” border of the floodplain lakes of the Volga River (Saratov oblast), Cand. Sci. (Biol.) Dissertation, Saratov, 2014.

    Google Scholar 

  • Djomina, I.V., Yermokhin, M.V., and Demin, A.G., Traps for quantitative estimation of adult amphibiotic insect emergence through boundary “water-air” in lentic aquatic systems, Povolzhsk. Ekol. Zh., 2009, no. 1, pp. 65–68.

    Google Scholar 

  • Djomina, I.V., Yermokhin, M.V., and Polukonova, N.V., Structure and dynamics of matter and energy fluxes through the boundary “water-air” resulted from adult amphibiotic insect emergence in flood-plain lakes of the Volga basin, Izv. Sarat. Gos. Univ., Ser. Khim., Biol., Ekol., 2013, vol. 13, no. 3, pp. 85–93.

    Google Scholar 

  • Egan, A.T., Ferrington Jr., L.C., Lafrançois, T., and Edlund, M.B., Seasonal variation in chironomid emergence from coastal pools, Eur. J. Environ. Sci., 2015, vol. 5, no. 1, pp. 15–23.

    Article  Google Scholar 

  • Fausch, K.D., Power, M.E., and Murakami, M., Linkages between stream and forest food webs: Shigeru Nakano’s legacy for ecology in Japan, Trends Ecol. Evol., 2002, vol. 17, no. 9, pp. 429–434.

    Article  Google Scholar 

  • Fenoglio, S., Bo, T., Tierno de Figueroa, J.M., López-Rodríguez, M.J., and Malacarne, G.A., comparison between local emergence patterns of Perla grandis and Perla marginata (Plecoptera, Perlidae), Hydrobiologia, 2008, vol. 607, no. 1, pp. 11–16.

    Article  Google Scholar 

  • Feuchtmayr, H., McKee, D., Harvey, I.F., Atkinson, D., and Moss, B., Response of macroinvertebrates to warming, nutrient addition and predation in large-scale mesocosm tanks, Hydrobiologia, 2007, vol. 584, no. 6, pp. 425–432.

    Article  CAS  Google Scholar 

  • Freitag, H., Composition and longitudinal patterns of aquatic insect emergence in small rivers of Palawan Island, the Philippines, Int. Rev. Hydrobiol., 2004, vol. 89, no. 4, pp. 375–391.

    Article  Google Scholar 

  • Gaidyshev, I., Analiz i obrabotka dannykh: spetsial’nyi spravochnik (Analysis and Treatment of the Data: Special Handbook), St. Petersburg: Piter, 2001.

    Google Scholar 

  • Gardarsson, A., Einarsson, A., Gislason, G.M., Hrafnsdottir, T., Ingvason, H.R., Jonsson, E., and Olafsson, J.S., Population fluctuations of chironomid and simuliid Diptera at Myvatn in 1977–1996, Aquat. Ecol., 2004, vol. 38, no. 2, pp. 209–217.

    Article  Google Scholar 

  • Gladyshev, M.I., Arts, M.T., and Sushchik, N.N., Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA+DHA) from aquatic to terrestrial ecosystems, in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M., Eds., New York: Springer-Verlag, 2009, pp. 179–210.

    Chapter  Google Scholar 

  • Grage, H.G., Kratina, P., Thompson, P.L., Pallen, W.J., Richardson, J.S., and Shurin, J.B., Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems, Global Change Biol., 2012, vol. 18, no. 2, pp. 504–514.

    Article  Google Scholar 

  • Gratton, C., Donaldson, J., and Zanden, M.J.V., Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland, Ecosystems, 2008, vol. 11, no. 5, pp. 764–774.

    Article  Google Scholar 

  • Greenwood, M.J., The Population Dynamics of a Riparian Spider: Interactive Effects of Flow-Related Disturbance on Cross-Ecosystem Subsidies and Spider Habitat, Upper Riccarton, UK: Univ. of Canterbury, 2007.

    Google Scholar 

  • Grimm, N.B., Gergel, S.E., McDowell, W.H., Boyer, E.W., Dent, C.L., Groffman, P., Hart, S.C., Harvey, J., Johnston, C., Mayorga, E., McClain, M.E., and Pinay, G., Merging aquatic and terrestrial perspectives of nutrient biogeochemistry, Oecologia, 2003, vol. 137, no. 4, pp. 485–501.

    Article  PubMed  Google Scholar 

  • Hahn, S., Bauer, S., and Klaassen, M., Quantification of allochthonous nutrient input into freshwater bodies by herbivorous waterbirds, Freshwater Biol., 2008, vol. 53, no. 1, pp. 181–193.

    Google Scholar 

  • Hummer, O., Harper, D.A.T., and Ryan, P.D., PAST: paleontological statistics software package for education and data analysis, Paleontol. Electron., 2001, vol. 4, no. 1, pp. 1–9.

    Google Scholar 

  • Hoekman, D., Dreyer, J., Jackson, R.D., Townsend, P.A., and Gratton, C., Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities, Ecology, 2011, vol. 92, no. 11, pp. 2063–2072.

    Article  PubMed  Google Scholar 

  • Ivkovic, M., Micetic Stankovic, V., and Mihaljevic, Z., Emergence patterns and microhabitat preference of aquatic dance flies (Empididae; Clinocerinae and Hemerodromiinae) on a longitudinal gradient of barrage lake system, Limnologica, 2012, vol. 42, no. 1, pp. 43–49.

    Article  Google Scholar 

  • Iwakuma, T. and Yasuno, M., Fate of the univoltine chironomid, Tokunagayusurika akamusi (Diptera: Chironomidae), at emergence in Lake Kasumigaura, Japan, Arch. Hydrobiol., 1983, vol. 99, no. 1, pp. 37–59.

    Article  Google Scholar 

  • Iwata, T., Linking stream habitats and spider distribution: spatial variations in trophic transfer across a foreststream boundary, Ecol. Res., 2007, vol. 22, no. 4, pp. 619–628.

    Article  Google Scholar 

  • Jackson, J.K. and Fisher, S.G., Secondary production, emergence, and export of aquatic insects of a Sonoran Desert stream, Ecology, 1986, vol. 67, no. 3, pp. 629–638.

    Article  Google Scholar 

  • Jonsson, M. and Wardle, D.A., The influence of freshwater- lake subsidies on invertebrates occupying terrestrial vegetation, Acta Oecol., 2009, vol. 35, no. 5, pp. 698–704.

    Article  Google Scholar 

  • Judd, W.W., A study of the population of insects emerging as adults from Saunders Pond at London, Ontario, Am. Midl. Nat., 1964, vol. 7, no. 2, pp. 402–414.

    Article  Google Scholar 

  • Kato, C., Iwata, T., Nakano, S., and Kishi, D., Dynamics of aquatic insect flux affects distribution of riparian web-building spiders, Oikos, 2003, vol. 103, no. 1, pp. 113–120.

    Article  Google Scholar 

  • Kharitonov, A.Y. and Popova, O.N., Migrations of dragonflies (Odonata) in the south of the West Siberian Plain, Entomol. Rev., 2011, vol. 91, no. 4, pp. 411–419.

    Article  Google Scholar 

  • Klaassen, H.E., An evaluation of the bottom fauna and its role as fish food in Fern Lake, PhD Thesis, Washington: Univ. of Washington, 1967.

    Google Scholar 

  • Kovats, Z., Ciborowski, J., and Corcum, L., Inland dispersal of adult aquatic insects, Freshwater Biol., 2003, vol. 36, no. 2, pp. 265–276.

    Article  Google Scholar 

  • Kraus, J.M. and Vonesh, J.R., Fluxes of terrestrial and aquatic carbon by emergent mosquitoes: a test of controls and implications for cross-ecosystem linkages, Oecologia, 2012, vol. 170, no. 4, pp. 1111–1122.

    Article  PubMed  Google Scholar 

  • Leeper, D.A. and Taylor, B.E., Insect emergence from a South Carolina (USA) temporary wetland pond, with emphasis on the Chironomidae (Diptera), J. North Am. Benthol. Soc., 1998, vol. 17, no. 1, pp. 54–72.

    Article  Google Scholar 

  • Leigh, C., Reis, T., and Sheldon, F., High potential subsidy of dry-season aquatic fauna to consumers in riparian zones of wet-dry tropical rivers, Inland Waters, 2013, vol. 3, no. 4, pp. 411–420.

    Article  Google Scholar 

  • Leroux, S.J. and Loreau, M., Subsidy hypothesis and strength of trophic cascades across ecosystems, Ecol. Lett., 2008, vol. 11, no. 11, pp. 1147–1156.

    PubMed  Google Scholar 

  • Lien, L., The energy budget of the brown trout population of Ovre Heimdalsvatn, Holarctic Ecol., 1978, vol. 1, pp. 279–300.

    Google Scholar 

  • Lynch, R.J., Bunn, S.E., and Catterall, C.P., Adult aquatic insects: potential contributors to riparian food webs in Australia’s wet-dry tropics, Austral. Ecol., 2002, vol. 27, no. 5, pp. 515–526.

    Article  Google Scholar 

  • MacKenzie, R.A., Spatial and temporal patterns in insect emergence from a Southern Maine Salt Marsh, Am. Midl. Nat., 2004, vol. 153, no. 2, pp. 257–269.

    Article  Google Scholar 

  • MacKenzie, R.A. and Kaster, J.L., Temporal and spatial patterns of insect emergence from a Lake Michigan coastal wetland, Wetlands, 2004, vol. 24, no. 3, pp. 688–700.

    Article  Google Scholar 

  • Malmqvist, B., Aquatic invertebrates in riverine landscapes, Freshwater Biol., 2002, vol. 47, no. 4, pp. 679–694.

    Article  Google Scholar 

  • Marczak, L.B., Trophic Flows across Ecosystem Boundaries: An Examination of the Strength and Consequences of Linkage between Stream and Forest Food Webs, Vancouver: Univ. of British Columbia, 2007.

    Google Scholar 

  • Marczak, L.B., Hoover, T.M., and Richardson, J.S., Trophic interception: how a boundary-foraging organism influences cross-ecosystem fluxes, Oikos, 2007, vol. 116, no. 10, pp. 1651–1662.

    Article  Google Scholar 

  • Marczak, L.B. and Richardson, J.S., Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest, J. Anim. Ecol., 2007, vol. 76, no. 4, pp. 687–694.

    Article  PubMed  Google Scholar 

  • Marczak, L.B. and Richardson, J.S., Growth and development rates in a riparian spider are altered by asynchrony between the timing and amount of a resource subsidy, Oecologia, 2008, vol. 156, no. 2, pp. 249–258.

    Article  PubMed  Google Scholar 

  • Marczak, L.B., Thompson, R.M., and Richardson, J.S., Meta-analysis: trophic level, habitat, and productivity shape the food web effects of resource subsidies, Ecology, 2007, vol. 88, no. 1, pp. 140–148.

    Article  PubMed  Google Scholar 

  • Martynova, M.V., Role of some benthic organisms in removal of nitrogen and phosphorous compounds from bottom deposits: a review, Gidrobiol. Zh., 1985, vol. 21, no. 6, pp. 44–48.

    Google Scholar 

  • Maul, J.D., Belden, J.B., Schwab, B.A., Whiles, M.R., Spears, B., Farris, J.L., and Lydy, M.J., Bioaccumulation and trophic transfer of polychlorinated biphenyls by aquatic and terrestrial insects to tree swallows (Tachycineta bicolor), Environ. Toxicol. Chem., 2009, vol. 25, no. 4, pp. 1017–1025.

    Article  Google Scholar 

  • McCauley, S.J., Davis, C.J., Werner, E.E., and Robeson, M.S., Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies, J. Anim. Ecol., 2013, vol. 72, no. 4, pp. 858–865.

    Google Scholar 

  • Menge, B. A., Chan, F., Dudas, S., Eerkes-Medrano, D., Grorud-Colvert, K., Heiman, K., Hessing-Lewis, M., Iles, A., Milston-Clements, R., and Noble, M., Do terrestrial ecologists ignore aquatic literature? Front. Ecol. Environ., 2009a, vol. 7, no. 4, pp. 182–183.

    Article  Google Scholar 

  • Menge, B.A., Chan, F., Dudas, S., Eerkes-Medrano, D., Grorud-Colvert, K., Heiman, K., Hessing-Lewis, M., Iles, A., Milston-Clements, R., and Noble, M., Terrestrial ecologists ignore aquatic literature: asymmetry in citation breadth in ecological publications and implications for generality and progress in ecology, J. Exp. Mar. Biol. Ecol., 2009b, vol. 377, no. 2, pp. 93–100.

    Article  Google Scholar 

  • Murakami, M. and Nakano, S., Indirect effect of aquatic insect emergence on a terrestrial insect population through by bird’s predation, Ecol. Lett., 2002, vol. 5, no. 3, pp. 333–337.

    Article  Google Scholar 

  • Nakano, S. and Murakami, M., Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 1, pp. 166–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, J.A., Stallings, C.D., Landing, W.M., and Chanton, J., Biomass transfer subsidizes nitrogen to offshore food webs, Ecosystems, 2013, vol. 16, no. 6, pp. 1130–1138.

    Article  CAS  Google Scholar 

  • Nowlin, W.H., González, M.J., Vanni, M.J., Stevens, M.H.H., Fields, M.W., and Valente, J.J., Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities, Ecology, 2007, vol. 88, no. 9, pp. 2174–2186.

    Article  PubMed  Google Scholar 

  • Oliver, D.R., Life history of the Chironomidae, Annu. Rev. Entomol., 1971, vol. 16, pp. 211–230.

    Article  Google Scholar 

  • Paetzold, A., Bernet, J.F., and Tockner, K., Consumerspecific responses to riverine subsidy pulses in a riparian arthropod assemblage, Freshwater Biol., 2006, vol. 51, no. 6, pp. 1103–1115.

    Article  Google Scholar 

  • Paetzold, A., Schubert, C.J., and Tockner, K., Aquatic terrestrial linkages along a braided-river: riparian arthropods feeding on aquatic insects, Ecosystems, 2005, vol. 8, no. 7, pp. 748–759.

    Article  Google Scholar 

  • Paetzold, A. and Tockner, K., Effects of riparian arthropod predation on the biomass and abundance of aquatic insect emergence, J. North Am. Benthol. Soc., 2005, vol. 24, no. 2, pp. 395–402.

    Article  Google Scholar 

  • Petersen, I., Masters, Z., Hildrew, A.G., and Ormerod, S.J., Dispersal of adult aquatic insects in catchments of differing land use, J. Appl. Ecol., 2004, vol. 41, no. 5, pp. 934–950.

    Article  Google Scholar 

  • Pinder, L.C.V., The Chironomidae and their ecology in chalk streams, in Forty Fifth Annual Report for the Year Ended March 31st, 1977, Ambleside, UK: Freshwater Biol. Assoc., 1977, pp. 62–69.

    Google Scholar 

  • Poepperl, R., Benthic secondary production and biomass emerging from a northern German temperate stream, Freshwater Biol., 2000, vol. 44, no. 2, pp. 199–211.

    Article  Google Scholar 

  • Popova, O.N. and Kharitonov, A.Y., Estimation of the carry-over of substances by dragonflies from water bodies to land in the forest-steppe of West Siberia, Contemp. Probl. Ecol., 2012, vol. 5, no. 1, pp. 34–39.

    Article  Google Scholar 

  • Power, M.E., Prey exchange between a stream and its forested watershed elevates predator densities in both habitats, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 1, pp. 14–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raikow, D.F., Walters, D.M., Fritz, K.M., and Mills, M.A., The distance that contaminated aquatic subsidies extend into lake riparian zones, Ecol. Appl., 2011, vol. 21, no. 3, pp. 983–990.

    Article  PubMed  Google Scholar 

  • Ricker, W.E., Methods for the Assessment of Fish Production in Fresh Waters, Oxford: Blackwell, 1968.

    Google Scholar 

  • Robb, G.N., McDonald, R.A., Chamberlain, D.E., and Bearhop, S., Food for thought: supplementary feeding as a driver of ecological change in avian populations, Front. Ecol. Environ., 2008, vol. 6, no. 9, pp. 476–484.

    Article  Google Scholar 

  • Rosenberg, D.M., Wiens, A.P., and Bilyj, B., Sampling emerging Chironomidae (Diptera) with submerged funnel traps in a new northern Canadian reservoir, Southern Indian Lake, Manitoba, Can. J. Fish. Aquat. Sci., 1980, vol. 37, no. 6, pp. 927–936.

    Article  Google Scholar 

  • Rosenberg, D.M., Wiens, A.P., and Bilyj, B., Chironomidae (Diptera) of wetlands in northwestern Ontario, Canada, Holarctic Ecol., 1988, vol. 11, no. 1, pp. 19–31.

    Google Scholar 

  • Rundio, D.E. and Lindley, S.T., Reciprocal fluxes of stream and riparian invertebrates in a coastal California basin with Mediterranean climate, Ecol. Res., 2012, vol. 27, no. 3, pp. 539–550.

    Article  Google Scholar 

  • Sabo, J.L. and Power, M.E., River-watershed exchange: effects of riverine subsidies on riparian lizards and their terrestrial prey, Ecology, 2002a, vol. 83, no. 11, pp. 1860–1869.

    Article  Google Scholar 

  • Sabo, J.L. and Power, M.E., Numerical response of lizards to aquatic insects and short-term consequences for terrestrial prey, Ecology, 2002b, vol. 83, no. 7, pp. 3023–3036.

    Article  Google Scholar 

  • Sanzone, D.M., Linking Communities across Ecosystem Boundaries: The Influence of Aquatic Subsidies on Terrestrial Predators, Athens: Univ. of Georgia, 2001.

    Google Scholar 

  • Sanzone, D.M., Meyer, J.L., Martí, E., Gardiner, E.P., Tank, J.L., and Grimm, N.B., Carbon and nitrogen transfer from a desert stream to riparian predators, Oecologia, 2003, vol. 134, no. 2, pp. 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber, S. and Rudolf, V.H.W., Crossing habitat boundaries: coupling dynamics of ecosystems through complex life cycles: coupling ecosystems with complex life cycles, Ecol. Lett., 2008, vol. 11, no. 6, pp. 576–587.

    Article  PubMed  Google Scholar 

  • Sherk, T. and Rau, G., Emergence of Chironomidae from Findley Lake and two ponds in the Cascade Mountains, USA, Neth. J. Aquat. Ecol., 1992, vol. 26, no. 2, pp. 321–330.

    Article  Google Scholar 

  • Sherk, T. and Rau, G., Emergence of Chironomidae from Findley Lake in the coniferous forest of the Cascade Mountains after early and late thaws, Hydrobiologia, 1996, vol. 318, no. 1, pp. 85–101.

    Article  Google Scholar 

  • Silina, A.E., Outflow of the matter and energy from wetland ecosystem during emergence of insects: succession aspect, Mater. III Vseross. simp. po amfibioticheskim i vodnym nasekomym “Problemy vodnoi entomologii Rossii i sovremennykh stran” (Proc. III All-Russ. Symp. on Amphibiotic and Aquatic Insects “Aquatic Entomology of Russia and Modern Countries”), Voronezh: Voronezh. Gos. Univ., 2007, pp. 303–324.

    Google Scholar 

  • Singh, M.P., Smith, S.M., and Harrison, A.D., Emergence of some caddisflies (Trichoptera) from a wooded stream in Southern Ontario, Hydrobiologia, 1984, vol. 112, no. 3, pp. 223–232.

    Article  Google Scholar 

  • Spänhoff, B., Kaschek, N., and Meyer, E.I., Laboratory investigation on community composition, emergence patterns and biomass of wood-inhabiting Chironomidae (Diptera) from a sandy lowland stream in Central Europe (Germany), Aquat. Ecol., 2004, vol. 38, no. 4, pp. 547–560.

    Article  Google Scholar 

  • Stagliano, D.M., Benke, A.C., and Anderson, D.H., Emergence of aquatic insects from two habitats in a small wetland of the southeastern USA: temporal patterns of numbers and biomass, J. North Am. Benthol. Soc. 1998, vol. 17, no. 1, pp. 37–53.

    Article  Google Scholar 

  • Vallentyne, J.R., Insect removal of nitrogen and phosphorous compounds from Lakes, Ecology, 1952, vol. 33, no. 4, pp. 573–577.

    Article  Google Scholar 

  • Ververk, W.C.E.P., Siepel, H., and Esselink, H., Applying life-history strategies for freshwater macroinvertebrates to lentic waters, Freshwater Biol., 2008, vol. 53, no. 9, pp. 1739–1753.

    Article  Google Scholar 

  • Walter, R.A., Species composition, distribution, population, biomass, and behavior: benthic macroinvertebrates, in An Ecosystem Approach to Aquatic Ecology: Mirror Lake and Its Environment, Likens, G.E., New York: Springer-Verlag, 1985, pp. 204–228.

    Google Scholar 

  • Walters, D.M., Fritz, K.M., and Otter, R.R., The dark side of subsidies: adult stream insects export organic contaminants to riparian predators, Ecol. Appl., 2008, vol. 18, no. 8, pp. 1835–1841.

    Article  PubMed  Google Scholar 

  • Welch, H.E., Emergence of Chironomidae (Diptera) from Char Lake, Resolute, Northwest territories, Can. J. Zool., 1973, vol. 51, no. 11, pp. 1113–1123.

    Article  Google Scholar 

  • Wesner, J.S., Seasonal variation in the trophic structure of a spatial prey subsidy linking aquatic and terrestrial food webs: adult aquatic insects, Oikos, 2010, vol. 119, no. 1, pp. 170–178.

    Article  Google Scholar 

  • Wrubleski, D.A., Chironomidae (Diptera) of peatlands and marshes in Canada, in Aquatic Insects of Peatlands and Marshes in Canada, Rosenberg, D.M. and Danks, H.V., Eds., Ottawa: Entomol. Soc. Can., 1987, pp. 141–161.

    Google Scholar 

  • Yard, H.K., van Riper III, C., Brown, B.T., and Kearsley, M.J., Diets of insectivorous birds along the Colorado River in Grand Canyon, Arizona, Condor, 2004, vol. 106, no. 1, pp. 106–115.

    Article  Google Scholar 

  • Zapol’skaya, T.I. and Shalapenok, E.S., Energy equivalents of insect biomass in biogeocenosises of perennial herbs, Mater. VII s”ezd Vses. Ekologicheskogo obshchestva (Proc. VII Congr. of All-Union Ecological Society), Leningrad: Zool. Inst., Akad. Nauk SSSR, 1974, part 1, pp. 41–42.

    Google Scholar 

  • Zinchenko, T.D. and Malinovskaya, L.V., Analysis of chironomids (Diptera, Chironomidae) in the Lower Volga and Northern Caspian regions, and their long-term dynamics of biomass, Izv. Samar. Nauch. Tsentra, Ross. Akad. Nauk, 2013, vol. 15, no. 3, pp. 508–517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Djomina.

Additional information

Original Russian Text © I.V. Djomina, M.V. Yermokhin, N.V. Polukonova, 2016, published in Sibirskii Ekologicheskii Zhurnal, 2016, No. 4, pp. 498–514.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djomina, I.V., Yermokhin, M.V. & Polukonova, N.V. Substance and energy flows formed by the emergence of amphibiotic insects across the water–air boundary on the floodplain lakes of the Volga River. Contemp. Probl. Ecol. 9, 407–420 (2016). https://doi.org/10.1134/S1995425516040053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425516040053

Keywords