Skip to main content
Log in

Microbiological factors of the formation of iron-containing minerals

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

In the present study, the process of biofilm formation in iron-containing aqueous medium in the presence of different organic compounds with different bioavailability (yeast extract, peptone, and humic substances) is considered. Investigations conducted using a scanning electronic microscope and X-ray diffraction analysis allow us to reveal the presence of biologically produced goethite (α-FeOOH) in the crystal structure. It was supposed that the supply of surface waters contaminated with organic compounds to ironcontaining underground waters could increase the risk of plugging aquifer pore space by biogenic iron-containing minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arami, H., Khandhar, A.P., Tomitaka, A., Yu, E., Goodwill, P.W., Conolly, S.M., and Krishnan, K.M., In vivo multimodal magnetic particle imaging (MPI) with tailored magneto/optical contrast agents, Biomaterials, 2015, vol. 52, pp. 251–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya, A., Stavitski, E., Dvorak, J., and Martínez, C.E., Redox interactions between Fe and cysteine: spectroscopic studies and multiplet calculations, Geochim. Cosmochim. Acta, 2013, vol. 2, no. 1, pp. 89–100.

    Article  Google Scholar 

  • Chan, C.S., Fakra, S.C., Edwards, D.C., Emerson, D., and Banfield, J.F., Iron oxyhydroxide mineralization on microbial extracellular polysaccharides, Geochim. Cosmochim. Acta, 2009, vol. 73, pp. 3807–3818.

    Article  CAS  Google Scholar 

  • Coker, V.S., Byrne, J.M., Telling, N.D., van der Laan, G., Lloyd, J.R., Hitchcock, A.P., Wang, J., and Pattrick, R.A., Characterization of the dissimilatory reduction of Fe(III)-oxyhydroxide at the microbe-mineral interface: the application of STXM-XMCD, Geobiology, 2012, vol. 10, no. 4, pp. 347–354.

    Article  CAS  PubMed  Google Scholar 

  • Cosmidis, J., Benzerara, K., Morin, G., Busigny, V., Lebeau, O., Jézéquel, D., Noël, V., Dublet, G., and Othmane, G., Biomineralization of iron-phosphates in the water column of Lake Pavin (Massif Central, France), Geochim. Cosmochim. Acta, 2014, vol. 126, no. 1, pp. 78–96.

    Article  CAS  Google Scholar 

  • Genuchten van, C.M., Peña, J., Amrose, S.E., and Gadgil, A.J., Structure of Fe(III) precipitates generated by the electrolytic dissolution of Fe(0) in the presence of groundwater ions, Geochim. Cosmochim. Acta, 2014, vol. 127, pp. 285–304.

    Article  Google Scholar 

  • Karmalov, A.I. and Filimonova, S.V., Overcoming of the clogging and corrosion effects of equipment boreholes, Vodosnabzh. Sanit. Tekh., 2011, no. 9, pp. 21–25.

    Google Scholar 

  • Kim, J., Choi, H., and Pachepsky, Y.A., Biofilm morphology as related to the porous media clogging, Water Res., 2010, vol. 44, no. 4, pp. 1193–1201.

    Article  CAS  PubMed  Google Scholar 

  • Kondratyeva, L.M. and Golubeva, E.M., Formation of iron minerals on zeolite matrix, Russ. Geol. Geophys., 2014, vol. 55, no. 12, pp. 1387–1394.

    Article  Google Scholar 

  • Kondratyeva, L.M. and Litvinenko, Z.N., Production of biofilms by microbial complexes in underground waters in vitro, Biotekhnologiya, 2014, no. 3, pp. 73–82.

    Google Scholar 

  • Kondratyeva, L.M., Morozova, O.Yu., Andreeva, D.V., Stukova, O.Yu., and Golubeva, E.M., Microbiological factor in Fe migration through the biogeochemical barriers, Mater. Vseross. kofn. “Geologicheskaya evolyutsiya vzaimodeistviya vody s gornymi porodami” (Proc. All- Russ. Conf. “Geological Evolution of Interaction of Water and Mountain Minerals”), Tomsk: Izd. Nauch. Tekh. Liter., 2012, pp. 321–324.

    Google Scholar 

  • Körstgens, V., Flemming, H.-C., Wingender, J., and Borchard, W., Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa, Water Sci. Technol., 2001, vol. 43, no. 6, pp. 49–57.

    PubMed  Google Scholar 

  • Kulakov, V.V. and Kondratyeva, L.M., Biogeochemical purification of underground waters in Amur region, Tikhookean. Geol., 2008, vol. 27, no. 1, pp. 109–118.

    CAS  Google Scholar 

  • Larese-Casanova, P., Haderlein, S.B., and Kappler, A., Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 13, pp. 3721–3734.

    Article  CAS  Google Scholar 

  • Nikolaev, Yu.A. and Plakunov, V.K., Biofilm—“city of microbes” or an analogue of multicellular organisms? Microbiology (Moscow), 2007, vol. 76, no. 2, pp. 125–138.

    Article  CAS  Google Scholar 

  • Potekhina, Zh.S., Metabolizm Fe(III) vosstanavlivayushchikh bakterii (Metabolism of Fe(III) Reducing Bacteria), Tolyatti: Inst. Ekol. Vodn. Basseina, Ross. Akad. Nauk, 2006.

    Google Scholar 

  • Rong, X.M., Chen, W.L., Huang, Q.Y., Cai, P., and Liang, W., Pseudomonas putida adhesion to goethite: studied by equilibrium adsorption, SEM, FTIR, and ITC, Colloids Surf., 2010, vol. 80, pp. 79–85.

    Article  CAS  Google Scholar 

  • Salas, E.C., Berelson, W.M., Hammond, D.E., Kampf, A.R., and Nealson, K.A., The impact of bacterial strain on the products of dissimilatory iron reduction, Geochim. Cosmochim. Acta, 2010, vol. 74, no. 2, pp. 574–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwertmann, U., Wagner, F., and Knicker, H., Ferrihydrite— humic associations: magnetic hyperfine interactions, Soil Sci. Soc. Am. J., 2005, vol. 69, pp. 1009–1015.

    Article  CAS  Google Scholar 

  • Shvartsev, S.L., Interaction in the water-rock system as a new basis for the development of hydrogeology, Russ. J. Pac. Geol., 2008, vol. 2, no. 6, pp. 465–475.

    Article  Google Scholar 

  • Walter, D., Buxbaum, G., and Laqua, W., The mechanism of the thermal transformation from goethite to hematite, J. Therm. Anal. Calorim., 2001, vol. 63, pp. 733–748.

    Article  CAS  Google Scholar 

  • Yang, H., Lu, R., Downs, R.T., and Costin, G., Goethite, a-FeO(OH), from single-crystal data, Acta Crystallogr., 2006, vol. 62, no. 12, pp. 250–252.

    Google Scholar 

  • Zavarzin, G.A., Non-Darwinian branch of evolution, Vestn. Ross. Akad. Nauk, 2000, vol. 70, no. 5, pp. 403–411.

    CAS  Google Scholar 

  • Zegeye, A., Mustin, C., and Jorand, F., Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite, Geobiology, 2010, vol. 8, no. 3, pp. 209–222.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. N. Litvinenko.

Additional information

Original Russian Text © L.M. Kondratyeva, E.M. Golubeva, Z.N. Litvinenko, 2016, published in Sibirskii Ekologicheskii Zhurnal, 2016, No. 3, pp. 377–389.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratyeva, L.M., Golubeva, E.M. & Litvinenko, Z.N. Microbiological factors of the formation of iron-containing minerals. Contemp. Probl. Ecol. 9, 318–328 (2016). https://doi.org/10.1134/S1995425516030070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425516030070

Keywords

Navigation