Universality principle in second-order phase transition models for describing succession processes and spatial distribution of species in forests

Abstract

For a description of the successional processes in forest coenoses and the spatial distribution of tree species, an approach using phase transitions models is proposed. We introduced a variable equation and phase transition models that describe processes in forest coenoses. The analysis showed that the model considering processes in the forest as second-order phase transitions is in good agreement with the field data. The model parameters can be calculated from the data of field observations and used for prognosis calculations of successional processes in a forest and the distribution of important tree species in high-altitude forests. The proposed approach to the modeling of dynamic processes in the forest as phase transitions is universal and it greatly simplifies the task of constructing models of forest dynamics.

This is a preview of subscription content, access via your institution.

References

  1. Bruce, A. and Cowley, R., Structural Phase Transitions, London: Taylor and Francis, 1981.

    Google Scholar 

  2. Carmel, Y., Kadmon, R., and Nirel, R., Spatiotemporal predictive models of Mediterranean vegetation dynamics, Ecol. Appl., 2001, vol. 11, pp. 268–280.

    Article  Google Scholar 

  3. Guisan, A. and Zimmermann, N.E., Predictive habitat distribution models in ecology, Ecol. Model., 2000, vol. 135, pp. 147–186.

    Article  Google Scholar 

  4. He, H.S., Mladenoff, D.J., and Crow, T.R., Linking an ecological model and a landscape model to study forest species response to climate warming, Ecol. Model., 1999, vol. 114, pp. 213–233.

    Article  Google Scholar 

  5. Isaev, A.S., Soukhovolsky, V.G., Ovchinnikova, T.M., Mochalov, S.A., and Sotnichenko, D.I., Succession processes in forest cenosis: a second-order phase transition model, Lesovedenie, 2012, no. 3, pp. 3–11.

    Google Scholar 

  6. Isaev, A.S., Soukhovolsky, V.G., Buzykin, A.I., and Ovchinnikova, T.M., Succession in forest cenosises: a model of second-order phase transition, Zh. Obshch. Biol., 2009, vol. 70, no. 6, pp. 451–458.

    CAS  PubMed  Google Scholar 

  7. Isaev, A.S., Soukhovolsky, V.G., and Khlebopros, R.G., Metamodel approaches to description of critical phenomena in forest ecosystems, Lesovedenie, 2010, no. 2, pp. 3–13.

    Google Scholar 

  8. Ismailova, D.M., Baboy, S.G., Gosteva, A.A., and Nazimova, D.I., GIS analyses of correlations between forest vegetation and relief by the example of barrier-rain landscapes of Western Sayan Mountains, Geoinformatika, 2011, no. 3, pp. 29–35.

    Google Scholar 

  9. Kairyukshtis, L., Nauchnye osnovy formirovaniya vysokoproduktivnykh selovo-listvennykh nasazhdenii (Scientific Principles of Formation of Highly-Productive Spruce-Larch Plantations), Leningrad: Lesn. Prom-st, 1969.

    Google Scholar 

  10. Komarov, A.S., Models of plant succession and soil dynamics at climate changes, Komp. Issled. Model., 2009, vol. 1, no. 4, pp. 405–413.

    Google Scholar 

  11. Komarov, A., Chertov, O., Zudin, S., Nadporozhskaya, M., Mikhailov, A., Bykhovets, S., Zudina, E., and Zoubkova, E., EFIMOD 2 — a model of growth and elements cycling in boreal forest ecosystems, Ecol. Model., 2003, vol. 170, nos. 2–3, pp. 373–392.

    CAS  Article  Google Scholar 

  12. Lafon, C.W., Ice-storm disturbance and long-term forest dynamics in the Adirondack Mountains, J. Veg. Sci., 2004, vol. 15, pp. 267–276.

    Article  Google Scholar 

  13. Landau, L.D., To the theory of phase transitions, Zh. Eksp. Teor. Fiz., 1937, vol. 7, p. 19.

    CAS  Google Scholar 

  14. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1964.

    Google Scholar 

  15. Li, B.L., A theoretical framework of ecological phase transition for characterizing tree-grass dynamics, Acta Biotheor., 2002, vol. 50, pp. 141–154.

    PubMed  Article  Google Scholar 

  16. Logofet, D.O., Markov’s chains as succession models: new perspectives of the classic paradigm, Lesovedenie, 2010, no. 2, pp. 46–52.

    Google Scholar 

  17. Miller, C. and Urban, D.L., A model of surface fire, climate and forest pattern in the Sierra Nevada, California, Ecol. Model., 1999, vol. 114, pp. 113–135.

    CAS  Article  Google Scholar 

  18. Patashinskii, A.Z. and Pokrovskii, V.L., Fluktuatsionnaya teoriya fazovykh perekhodov (Fluctuation Theory of Phase Transitions), Moscow: Nauka, 1982.

    Google Scholar 

  19. Perry, G.L.W. and Millington, J.D.A., Spatial modeling of succession-disturbance dynamics in forest ecosystems: concepts and examples, Persp. Plant Ecol., Evol., Syst., 2008, vol. 9, pp. 191–210.

    Article  Google Scholar 

  20. Polikarpov, N.P., Chebakova, N.M., and Nazimova, D.I., Klimat i gornye lesa Yazhnoi Sibiri (Climate and Mountainous Forests of Southern Siberia), Novosibirsk: Nauka, 1986.

    Google Scholar 

  21. Ryzhkova, V.A., Korets, M.A., and Cherkashin, V.P., Estimating current forest ecosystem state, regeneration, and biodiversity using GIS technologies, Contemp. Probl. Ecol., 2004, no. 5, pp. 715–724.

    Google Scholar 

  22. Shugart, H.H., Terrestrial Ecosystems in Changing Environments: Cambridge Studies in Ecology, Cambridge: Cambridge Univ. Press, 1998.

    Google Scholar 

  23. Soukhovolsky, V.G., Iskhakov, T.R., and Tarasova, O.V., Optimizatsionnye modeli mezhpopulyatsionnykh vzaimodeistvii (Optimization Models of Interpopulation Interactions), Novosibirsk: Nauka, 2008.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. G. Soukhovolsky.

Additional information

Original Russian Text © A.S. Isaev, T.M. Ovchinnikova, S.D. Baboi, V.G. Soukhovolsky, 2014, published in Sibirskii Ekologicheskii Zhurnal, 2014, Vol. 21, No. 3, pp. 345–354.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isaev, A.S., Ovchinnikova, T.M., Baboi, S.D. et al. Universality principle in second-order phase transition models for describing succession processes and spatial distribution of species in forests. Contemp. Probl. Ecol. 7, 261–267 (2014). https://doi.org/10.1134/S199542551403007X

Download citation

Keywords

  • forest stands
  • tree species
  • succession
  • high-altitude forest
  • models
  • phase transitions