Skip to main content
Log in

Influence of abiotic factors on the content of fatty acids of Ulva Intestinalis

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The composition of fatty acids (FAs) of a green alga (Ulva intestinalis) inhabiting small rivers of the Elton Lake basin has been investigated. It has been established that long-chain FAs with 16 and 18 carbon atoms are essential. We have investigated the composition variability of FAs of lipids of U. intestinalis depending on environmental factors: the level of mineralization, temperature, oxygen saturation, and acidity. It has been revealed that FA nonsaturation increases with an increase in mineralization. We assume that ω-6 and ω-3 desaturases participate in the adaptation of U. intestinalis to this factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vinogradova, K.L., Ul’vovye vodorosli (Chlorophyta) morei SSSR (Green Algae (Chlorophyta) in the Seas of USSR), Leningrad: Nauka, 1974.

    Google Scholar 

  2. Evstigneeva, I.K. and Grintsov, V.A., Quantitative development and species diversity of macroalgae on artificial substrate in the Black Sea, Ekol. Morya., 2001, no. 55, pp. 11–17.

    Google Scholar 

  3. Alstroem-Rapaport, C. and Leskinen, E., Development of microsatellite markers in the green algae Enteromorpha intestinalis (Chlorophyta), Mol. Ecol. Notes., 2002, vol. 2, no. 4, pp. 581–583.

    Article  CAS  Google Scholar 

  4. Zhizn’ rastenii (Life of the Plants), Gollerbakh, M.M., Eds., Moscow: Prosveshchenie, 1977, vol. 3.

    Google Scholar 

  5. Martins, I. and Marques, J.C., A model for the growth of opportunistic macroalgae (Enteromorpha sp.) in tidal estuaries, Estuarine, Coastal Shelf Sci., 2002, vol. 55, no. 2, pp. 247–257.

    Article  CAS  Google Scholar 

  6. Los’, D.A., Structure, regulation of expression, and activity of fatty acid desaturases, Usp. Biol. Khim., 2001, vol. 41, pp. 163–198.

    Google Scholar 

  7. Larcher, W., Physiological Plant Ecology, Berlin: Springer, 2003, 4th ed.

    Book  Google Scholar 

  8. Zunzunegui, M., Cruz Diaz Barradas, M., Ain-Lhout, F., Alvares-Cansino, L., Esquivias, M.P., and Garcia Novo, F., Seasonal physiological plasticity and recovery capacity after summer stress in Mediterranean scrub communities, Plant Ecol., 2011, vol. 212, pp. 127–142.

    Article  Google Scholar 

  9. Alaudinova, E.V. and Mironov, P.V., Meristematic lipids of forest-forming coniferous in Central Siberia affected by low temperatures. 2. Metabolic peculiarities of fatty acids in phospholipids in meristems of Lapix sibirica Ledeb., Picea obovata L. and Pinus sylvestris L., Khim. Rastit. Syr’ya., 2009, no. 2, pp. 71–76.

    Google Scholar 

  10. Cartea, M.E., Migdal, M., Galle, A.M., Pelleiter, G., and Guerche, P., Comparison of sense and antisense methodologies for modifying the fatty acid composition of Arabidopsis thaliana oilseed, Plant Sci., 1998, vol. 136, pp. 181–194.

    Article  CAS  Google Scholar 

  11. Rozentsvet, O.A. Nesterov, V.N., and Bogdanova, E.S., Influence of abiotic factors on the lipid composition of Ulva intestinalis (L.) link (Chlorophyta) in small rivers of the El’ton Lake basin of the Caspian lowland, Inland Wat. Biol., 2012, vol. 5, no. 2, pp. 214–221.

    Article  Google Scholar 

  12. Atlas pochv SSSR (Soil Atlas of USSR), Kaurichev, I.S. and Gromyko, I.D., Eds., Moscow: Kolos, 1974.

    Google Scholar 

  13. Jacoby, B., Mechanisms involved in salt tolerance of plants, in Handbook of Plant and Crop Stress, Pessarakli, M., Ed., New York: Marcel Dekker, 1999, pp. 97–123.

    Chapter  Google Scholar 

  14. Munns, R., Comparative physiology of salt and water stress, Plant Cell Environ., 2002, vol. 25, pp. 239–250.

    Article  PubMed  CAS  Google Scholar 

  15. Aleksin, O.A., Semenov, A.D., and Skopintsev, B.A., Rukovodstvo po khimicheskomu analizu vod sushi (Handbook on Chemical Analysis of Land Waters), Leningrad: Gidrometeoizdat, 1973.

    Google Scholar 

  16. Bligh, E.G. and Dyer, W.J., A rapid method of lipid extraction and purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911–917.

    Article  PubMed  CAS  Google Scholar 

  17. Kobzar’, A.I., Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov (Applied Mathematical Statistics for Engineers and Scientists), Moscow: Fizmatlit, 2006.

    Google Scholar 

  18. Thompson, G.A., Lipids and membrane function in green algae, Biochim. Biophys. Acta, 1996, vol. 1302, pp. 17–45.

    Article  PubMed  Google Scholar 

  19. Romanenko, V.,D., Osnovy gidroekologii (Basic Hydroecology), Kiev: Geneza, 2004.

    Google Scholar 

  20. Khotimchenko, S.V., Lipidy morskikh vodoroslei-makrofitov i trav. Structura. Rasprostranenie. Analiz (Lipids of Marine Algae-Macrophytes and Grasses. Structure. Distribution. Analysis), Vladivostok: Dal’nauka, 2003.

    Google Scholar 

  21. Ivanova, A., Nechev, J., and Stefanov, K., Effect of soil salinity on the lipid composition of halophyte plants from the sand bar of Pomorie, Gen. Appl. Plant Physiol., 2006, special issue, pp. 125–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Nesterov.

Additional information

Original Russian Text © V.N. Nesterov, O.A. Rozentsvet, E.S. Bogdanova, 2013, published in Sibirskii Ekologicheskii Zhurnal, 2013, No. 4, pp. 585–592.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nesterov, V.N., Rozentsvet, O.A. & Bogdanova, E.S. Influence of abiotic factors on the content of fatty acids of Ulva Intestinalis . Contemp. Probl. Ecol. 6, 441–447 (2013). https://doi.org/10.1134/S1995425513040070

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425513040070

Keywords

Navigation