Skip to main content
Log in

Stable nitrogen isotopes (d15N) in thalli of arid vagrant lichen Xanthoparmelia camtschadalis across an altitudinal gradient of the Khangai Plateau of Mongolia

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The d15N values of stable nitrogen isotopes were determined in samples of organic matter (OM) of thalli of vagrant lichen Xanthoparmelia camtschadalis collected across 13 altitudinal levels within the range of 1550–3250 m above sea level of both steppes and highland meadows of the Khangai Plateau of Mongolia. No correlation between the d15N values of lichen OM and the altitude range was detected at the regional scale. However, at a local scale including vegetation type, botanical-geographical area of Khangai, and mountain slope, the amount of the 15N heavy isotope in lichen OM was found to be decreased with an altitude increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Galimov, E.M., Priroda biologicheskogo fraktsionirovaniya izotopov (The Nature of Biological Fractionation of Isotopes), Moscow: Nauka, 1981.

    Google Scholar 

  2. Hoefs, J., in Stable Isotope Geochemistry, Heidelberg: Springer, 1980.

    Google Scholar 

  3. Högberg, P., 15N Natural Abundance in Soil-Plant Systems, New Phytol., 1997, vol. 137, pp. 179–203.

    Article  Google Scholar 

  4. Robinson, D., d15N As An Integrator of the Nitrogen Cycle, Trends Ecol. Evol., 2001, vol. 16, pp. 153–162.

    Article  PubMed  Google Scholar 

  5. Dawson, T.E., Mambelli, S., Plamboeck, A.H., Temper, P.H., and Tu, K.P., Stable Isotopes in Plant Ecology, Annu. Rev. Ecol. Syst., 2002, vol. 33, pp. 507–559.

    Article  Google Scholar 

  6. Fry, B., Stable isotope ecology, Springer Science + Business Media, LLC, p. 308.

  7. Tiunov, A.V., Stable Isotopes of Carbon and Ntirogen in Ecological Studies of Soil, Izv. Akad. Nauk, Ser. Biol., 2007, no. 4, pp. 475–489.

  8. Makarov, M.I., The Nitrogen Isotopic Composition in Soils and Plants: Its Use in Environmental Studies (Review), Eur. Soil Sci., 2009, vol. 42, no. 12, pp. 1335–1348.

    Article  Google Scholar 

  9. Environmental isotopes in biodegradation and bioremidiation, Aelion, C.M., Hohener, P., Hunkeler, D., and Aravena, R., Eds., CRC Press, 2010.

  10. Lange, O.L., Pflanzenleben unter Stress: Flechten als Pioniere der Vegetation an Extremstandorten der Erde, Rostra Universitatis Wirceburgensis, 1992, p. 59.

  11. Biazrov, L.G., Medvedev, L.N., and Chernova, N.M., Lichen Consorts in Deciduous Fir Forests of Moscow Suburbs, in Biogeotsenologicheskie issledovaniya v shirokolistvenno-elovykh lesakh (Biogeocenological Studies in Deciduous Fir Forests), Moscow: Nauka, 1971, pp. 252–270.

    Google Scholar 

  12. Biazrov, L.G., Lichen Communities as a Habitat for Invertebrates, Tezisy dokladov Vtoroi Vserossiiskoi konferencii po Biogeografii pochv (Proc. 2nd All-Russian Conf. on Soil Biogeography), Moscow, 2009, p. 16.

  13. Baur, B. and Baur, A., Xanthoria Parietina As a Food Resource and Shelter for the Land Snail Balea Perversa, Lichenologist, 1997, vol. 29, pp. 99–102.

    Article  Google Scholar 

  14. Schneider, K., Migge, S., Norton, R.A., Scheu, S., Langel, R., Reineking, A., and Maraun, M., Trophic Niche Differentiation in Soil Microarthropods (Oribatida, Acari): Evidence from Stable Isotope Ratios (15N/14N), Soil Biol. Biochem., 2004, vol. 36, pp. 1769–1774.

    Article  CAS  Google Scholar 

  15. Chahartaghi, M., Langel, R., Scheu, S., and Ruess, L., Feeding Guilds in Collembola Based on Nitrogen Stable Isotope Ratios, Soil Biol. Biochem., 2005, vol. 37, pp. 1718–1725.

    Article  CAS  Google Scholar 

  16. Huiskes, A.H.L., Boschker, H.T.S., Lud, D., and Moerdijk-Poortvliet, T.C.W., Stable Isotope Ratios As a Tool for Assessing Changes in Carbon and Nutrient Sources in Antarctic Terrestrial Ecosystems, Plant Ecology, 2006, vol. 182, pp. 79–86.

    Google Scholar 

  17. Bokhorst, S., Huiskes, A., Convey, P., and Aerts, R., External Nutrient Inputs Into Terrestrial Ecosystems of the Falkland Islands and the Maritime Antarctic Region, Polar Biology, 2007, vol. 30, pp. 1315–1321.

    Article  Google Scholar 

  18. Erdmann, G., Otte, V., Langel, R., Scheu, S., and Maraun, M., The Trophic Structure of Bark-Living Oribatid Mite Communities Analysed with Stable Isotopes (15N, 13C) Indicates Strong Niche Differentiation, Experimental & Applied Acarology, 2007, vol. 41, pp. 1–10.

    Article  Google Scholar 

  19. Lichen Biology, Nash, T.H., Ed., Cambridge: Cambridge University Press, 2008, 2nd ed.

    Google Scholar 

  20. Honegger, R., Lichen-Forming Fungi and Their Photobionts, in The Mycota. Plant Relationships, Berlin Heidelberg: Springer, 2009, vol. 5, 2nd ed., pp. 307–333.

    Google Scholar 

  21. Palmqvist, K., Dahlman, L., Valladares, F., Tehler, A., Sancho, L.G., and Mattsson, J.E., CO2 Exchange and Thallus Nitrogen across 75 Contrasting Lichen Associations from Different Climate Zones, Oecologia, 2002, vol. 133, pp. 295–306.

    Article  Google Scholar 

  22. Fogel, M.L., Wooller, M.J., Cheeseman, J., Smallwood, B.J., Roberts, Q., Romero, I., and Meyers, M.J., Unusually Negative Nitrogen Isotopic Compositions (d15N) of Mangroves and Lichens in An Oligotrophic, Microbially-Influenced Ecosystem, Biogeosciences, 2008, vol. 5, pp. 1693–1704.

    Article  CAS  Google Scholar 

  23. Kappen, L. and Valladares, F., Opportunistic Growth and Desiccation Tolerance: the Ecological Success of Poikilo-Hydrous Autotrophs, Funct. Plant Ecol., 2007, pp. 7–65.

  24. Lange, O.L., Green, T.G.A., and Ziegler, H., Water Status Related Photosynthesis and Carbon Isotope Discrimination in Species of the Lichen Genus Pseudocyphellaria with Green Or Blue-Green Photobionts and in Photo-Symbiodemes, Oecologia, 1988, vol. 75, pp. 494–501.

    Article  Google Scholar 

  25. Øvstedal, D.O. and Lewis Smith, R.I., Lichens of Antarctica and South Georgia: a Guide To Their Identification and Ecology, Cambridge: Cambridge University Press, 2001.

    Google Scholar 

  26. Sedel’nikova, N.V., Lishainiki Zapadnogo i Vostochnogo Sayana (Lichens of the Western and the Eastern Sayan Mountains), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2001.

    Google Scholar 

  27. Makryi, T.V., Lishainiki Baikal’skogo khrebta (Lichens of the Baikal Mountain Range), Novosibirsk: Nauka, 1990.

    Google Scholar 

  28. Maguas, C. and Brugnoli, E., Spatial Variation in Carbon-Isotope Discrimination across the Thalli of Several Lichen Species, Plant, Cell Environ., 1996, vol. 19, pp. 437–446.

    Article  Google Scholar 

  29. Cuna, S., Balas, G., and Hauer, E., Effects of Natural Environmental Factors on d13C of Lichens, Isot. Environ. Health Stud., 2007, vol. 43, pp. 95–104.

    Article  CAS  Google Scholar 

  30. Lakatos, M., Hartard, B., and Maguas, C., The Stable Isotopes d13C and d18O of Lichens Can Be Used As Tracers of Microenvironmental Carbon and Water Sources, in Stable isotopes as indicators of ecological change, USA: Elsevier, 2007, pp. 77–92.

    Chapter  Google Scholar 

  31. Geomorfologiya Mongol’skoi Narodnoi Respubliki (Geomorphology of People’s Republic of Mongolia), Florensov, N.A, and Korzhuev, S.S, Eds., Moscow: Nauka, 1982.

    Google Scholar 

  32. Beresneva, I.A., Klimaty aridnoi zony Azii (Climatic Conditions of the Arid Zone of Asia), Moscow: Nauka, 2006.

    Google Scholar 

  33. Beresneva, I.A., Climate, in Gornaya lesostep’ Vostochnogo Khangaya (Mountain Forest-Steppe of the Eastern Khangai), Moscow: Nauka, 1983, pp. 32–39.

    Google Scholar 

  34. Biazrov, L.G., Ganbold, E., Gubanov, I.A., and Ulziikhutag, N., Flora Khangaya (The Khangai Flora), Leningrad: Nauka, 1989.

    Google Scholar 

  35. Karamysheva, Z.V. and Banzragch, D., Some Botanical-Geographical Characteristics of the Khangai Related to Its Zoning, in Rastitel’nyi i zhivotnyi mir Mongolii (Flora and Fauna of Mongolia), Leningrad: Nauka, 1977, pp. 7–26.

    Google Scholar 

  36. Biazrov, L.G., Mass Resource of Epigene Macrolichens in Some Mountain Steppe Ecosystems of the Khangai, Ekologiya, 1976, no. 2, pp. 81–84.

  37. Biazrov, L.G., Lichens in Dry Steppes of the Eastern Khangai, Byul. MOIP., Otd. Biol, 1988, vol. 93, no. 6, pp. 66–80.

    Google Scholar 

  38. Biazrov, L.G., Lichen Synusiae and the Structure of an Ecosystem, Zh. Obshch. Biol., 1990, vol. 51, pp. 632–641.

    Google Scholar 

  39. Biazrov, L.G., Lichen Synusiae of Poic Petrophyte Steppe of the Eastern Khangai (Mongolia), Bot. Zh., 1990, vol. 75, pp. 1690–1699.

    Google Scholar 

  40. Biazrov, L.G., The Nomenclature of Vagrant Parmelia and Resourses of This Lichen in the Khangai, in Prirodnye usloviya i biologicheskie resursy MNR (Environmental Conditions and Biological Resourses of Mongolia), Moscow: Nauka, 1986, pp. 67–68.

    Google Scholar 

  41. Golubkova, N.S and Biazrov, L.G., Life Forms of Lichen and Lichensynusiae, Bot. Zh., 1989, vol. 74, pp. 794–805.

    Google Scholar 

  42. Hale, M., A Monograph of the Lichen Genus Xanthopar-Melia (Vainio) Hale (Ascomycotina, Parmeliaceae), Smithsonian contributions to botany, 1990, no. 74, pp. 1–250.

  43. Bargagli, R., Iosco, F.P., and Amato, M.L., Zonation of Trace Metal Accumulation in Three Species of Epiphytic Lichens Belonging To the Genus Parmelia, Cryptogamie, Bryologie, Lichenologie, 1987, vol. 8, pp. 331–337.

    CAS  Google Scholar 

  44. Biazrov, L.G., Lishainiki v ekologicheskom monitoringe (Lichens in Ecological Monitoring), Moscow: Nauchnyi Mir, 2002.

    Google Scholar 

  45. Biazrov, L.G., Lishainiki kak indikatory radioaktivnogo zagryazneniya (Lichens as Indicators of Radioactive Pollution), Moscow: KMK, 2005.

    Google Scholar 

  46. Meichik, N.R., Lyubimova, E.G., and Ermakov, I.P., Ion-exchange Properties of a Cell Wall of Sladonia rangiferina Fruticose Lichen, Russ. J. Plant Physiol., 2010, vol. 57, pp. 273–279.

    Article  Google Scholar 

  47. Hietz, P., Wanek, W., and Popp, M., Stable Isotopic Composition of Carbon and Nitrogen and Nitrogen Content in Vascular Epiphytes Along An Altitudinal Transect, Plant, Cell Environ., 1999, vol. 22, pp. 1435–1443.

    Article  Google Scholar 

  48. Huber, E., Wanek, W., Gottfried, M., Pauli, H., Schweiger, P., Arndt, S.K., Reiter, K., and Richter, A., Shift in Soil-Plant Nitrogen Dynamics of an Alpine-Nival Ecotone, Plant Soil, 2007, vol. 301, pp. 65–76.

    Article  CAS  Google Scholar 

  49. Mannel, T.T., Auerswald, K., and Schnyder, H.T., Altitudinal Gradients of Grassland Carbon and Nitrogen Isotope Composition Are Recorded in the Hair of Grazers, Global Ecol. Biogeogr., 2007, vol. 16, pp. 583–592.

    Article  Google Scholar 

  50. Liu, X.-H., Zhao, L.-J., Gasaw, M., Gao, D.-Y., Qin, D.-H., and Ren, J.-W., Foliar d13C and d15N Values of C3 Plants in the Ethiopia Rift Valley and Their Environmental Controls, Chinese. Sci. Bull., 2007, vol. 52, pp. 1265–1273.

    Article  CAS  Google Scholar 

  51. Liu, X.-Z., Wang, G.-A., Li, J.-Z., and Wang, Q., Nitrogen Isotope Composition Characteristics of Modern Plants and Their Variations Along an Altitudinal Gradient in Dongling Mountain in Beijing, Sci. China: Earth Sci., 2010, vol. 53, pp. 128–140.

    Article  CAS  Google Scholar 

  52. Skrzypek, G., Jezierski, P., and Szynkiewicz, A., Preservation of Primary Stable Isotope Signatures of Peat-Forming Plants During Early Decomposition-Observation Along An Altitudinal Transect, Chem. Geol., 2010, vol. 273, pp. 238–249.

    Article  CAS  Google Scholar 

  53. Liu, X.-Y., Xiao, H.-Y., Liu, C.-Q., and Li, Y.-Y., Stable Carbon and Nitrogen Isotopes of the Moss Haplo-Cladium Microphyllum in An Urban and a Background Area (SW China): The Role of Environmental Conditions and Atmospheric Nitrogen Deposition, Atmos. Environ., 2008, vol. 42, pp. 5413–5423.

    Article  CAS  Google Scholar 

  54. Zechmeister, H.G., Richter, A., Smidt, S., Hohenwallner, D., Roder, I., Maringer, S., and Wanek, W., Total Nitrogen Content and d15N Signatures in Moss Tissue: Indicative Value for Nitrogen Deposition Patterns and Source Allocation on a Nationwide Scale, Environ. Sci. Technol., 2008, vol. 42, pp. 8661–8667.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Biazrov.

Additional information

Original Russian Text © L.G. Biazrov, 2012, published in Sibirskii Ekologicheskii Zhurnal, 2012, No. 2, pp. 267–276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biazrov, L.G. Stable nitrogen isotopes (d15N) in thalli of arid vagrant lichen Xanthoparmelia camtschadalis across an altitudinal gradient of the Khangai Plateau of Mongolia. Contemp. Probl. Ecol. 5, 200–207 (2012). https://doi.org/10.1134/S1995425512020047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425512020047

Keywords