Numerical Analysis and Applications

, Volume 12, Issue 1, pp 15–25 | Cite as

A Boundary Value Problem of Magnetoporosity in Near-Wellbore Space

  • Sh. Kh. ImomnazarovEmail author
  • M. V. Urev


The existence and uniqueness of a generalized solution to a boundary value problem for the system of magneto-porosity equations in the dissipative approximation are proved. The results of a numerical solution obtained by a finite element method for a test boundary value problem of magnetoporosity in the frequency domain are presented.


porous medium magnetic field conductive fluid generalized solution finite element method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorovsky, V.N. and Imomnazarov, Sh.Kh., A Mathematical Model for the Movement of a Conducting Liquid through a Conducting PorousMedium, Math. Comp. Modell., 1994, vol. 20, pp. 91–97.CrossRefzbMATHGoogle Scholar
  2. 2.
    Dorovsky, V.N. and Dorovsky, S.V., An EelectromagnetoacousticMethod ofMeasuring Electric Conductivity and ξ-Potential, Geol. Geofiz., 2009, vol. 50, no. 6, pp. 735–744.Google Scholar
  3. 3.
    Imomnazarov, Sh.Kh. and Dorovsky, V.N., Magnetosonic Oscillations in Well Conditions Determining Electrokinetic Parameters of a Porous Saturated Medium, Mat. XIII mezhdun. nauch. kongr. “Interexpo GEO-Sibir’-2017” (Mat. XIII International Scientific Congress “Interexpo GEO-Siberia-2017”), vol. 1, Novosibirsk: Siberian State University of Geosystems and Technology, 2017, pp. 186–190.Google Scholar
  4. 4.
    Mikhailov, V.P., Differentsial’nye uravneniya v chastnykh proizvodnykh (Partial Differential Equations), Moscow: Nauka, 1983.Google Scholar
  5. 5.
    Aubin, J.-P., Priblizhyonnoe reshenie ellipticheskikh kraevykh zadach (Approximation of Elliptic Boundary-Value Problems),Moscow:Mir, 1977.Google Scholar
  6. 6.
    McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.zbMATHGoogle Scholar
  7. 7.
    Marchuk, G.I. and Agoshkov, V.I., Vvedenie v proektsionno-setochnyemetody (Introduction to Projection-GridMethods), Moscow: Nauka, 1981.zbMATHGoogle Scholar
  8. 8.
    Mikhlin, S.G., Variatsionnye metody v matematicheskoi fizike (Variational Methods in Mathematical Physics),Moscow: Nauka, 1970.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations